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A Study of Temporal Citation Count Prediction
using Reinforcement Learning

Hengshuai Yao, Davood Rafiei, and Rich Sutton

Abstract—In a recently studied problem, Yan et. al. (2011)
studied predicting the count of citations that already happened
using pair-wise machine learning. Predicting the number of
future citations based on only the past data is obviously more
practical and more challenging. In this paper, we study the
problem of temporal prediction of citation counts for academic
papers. We propose a model-free method and a model-based
method, respectively for predicting citation counts in both long
and short terms. We extend the citation count measure to a
general value function, which forms the basics for our application
of reinforcement learning (RL). Our methods are based on two
RL algorithms, least-squares temporal difference (LSTD) and
linear Dyna. Our methods use quite a few novel features including
those from citing papers and historical citation counts as well as
those based on authors, keywords, and venues. Empirical results
show that temporal prediction has its unique difficulties, and the
pair-wise supervised learning methods can be unstable. Both our
methods produce stable and accurate predictions. In addition,
results also suggest that, unlike previous citation count prediction
results, temporal prediction of citation count in a longer time
span is less accurate. This highlights the need to study the
temporal prediction problem and develop accurate predictors.

Index Terms—multi-step time series prediction, citation count,
reinforcement learning, temporal difference learning methods

I. INTRODUCTION

Modeling and predicting time series is an important problem
that has a wide range of applications. For example, in weather
forecasting one estimates several variables such as the proba-
bility of raining, the probability of hails, the direction of wind,
etc. An important feature of real-world prediction problems is
that one has access to a sequence of certain observations and
predictions are made strictly based on the past. In the weather
forecasting problem one can observe, for example, the current
local temperature, the weather yesterday, etc. A predictor is
hence expected to take advantage of observations in making
accurate predictions about the future.

In this paper, we study the problem of predicting citation
counts in large academic networks. The citation count mea-
sures the importance of a paper by the number of citations
it receives during a period [8]. A well practiced extension is
the impact factor used by Thomson Reuters Journal Citation
Reports, which measures a journal by the average number
of citations received by the articles published. Though new
methods of ranking papers and scholars keep emerging, ci-
tation count is still the most popular measure for academic
evaluation, partly because it is intuitive, simple, yet effective.
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Moreover, modeling trends of citation count is important also
because it provides insights into the quality and trends of
scientific research. The 2003 KDD Cup [9] contains a task
of predicting the numbers of citations for a group of physics
papers. The challenge of modeling citation counts is that they
are highly dynamic and grow at different rates for individual
papers. Indeed, the general problem of predicting trends of
dynamic data is a challenging topic in data mining, and is
driven by practical applications. For example, Netflix put a lot
of emphasis on predicting user interests in movies and used to
have a competition with one-million-dollar reward to increase
their accuracy by 10%. In guaranteed display advertising it is
critical to accurately estimate future user visits for the benefits
of both advertisers and publishers [1]. In search engines,
predicting query count helps build language models to help
detect trends early [10].

In general, in this paper we propose a multi-step formulation
of predicting a temporal function, as shown in Figure 1. A
state, which can be defined arbitrarily according to applica-
tions, has some associated value that depends on the future.
Given a history of temporal observations of a state, we would
like to predict its value starting from any time. We also would
like to predict for states whose histories are unavailable, by
learning from their similar states—in the machine learning
language—we would like to generalize. In this paper, we focus
in particular on predicting future citation counts for research
papers in academic networks. In this case, a state is a paper, the
value to predict is the number of future citations that the paper
receives since a given year. We observe the features and the
numbers of citations of a group of papers in a number of years,
and the goal is to learn a predictor for future citation count. We
deal with predicting both short and long term citation counts.
It is important to note that our problem is very different from
the one studied by Yan et.al. [22]. Their problem is to predict
the citation count that already happened based on historical
data. For example, in their one-year prediction experiment, a
data set of 10,000 papers were taken as the training set, and
another set of 10,000 papers taken as the test set, both collected
from year 2009. Intuitively, their problem is somehow a spatial
prediction problem which generalizes only in papers. Their
problem is well motivated by machine learning applications
in which one wants to learn a generalization function from
training data. In our problem, predictions about the future are
strictly based on information from the past. Thus our problem
is not only a spatial prediction problem but also a temporal
prediction problem, which generalizes in both papers and time
and is obviously more practical and challenging. The temporal
aspect has unique difficulties as we will show in this paper.
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Fig. 1: The general problem we study. We are to predict the
future value of a “state” starting from a given year in a certain
(potentially variable) number of years. We have a sequence of
past observations for the state. Each observation consists in
a temporal value (“reward”) and some associated features at
each time step.

Our Problem. Let t (t ≥ 0) be our current time step.
Given a historical observation sequence about a variable x,
{xj}0≤j≤t−1, where xj is a vector of observations at time
step j, the task is to predict a scalar value dependent on x
and time step t. We will refer to this problem as a temporal
prediction problem given its time-based nature.

Example 1. A robot has many sensors. Each sensor enables
the robot to observe one particular aspect of the environment.
For example, a sensor detects the brightness, another monitors
the direction and the speed of the robot, while another mea-
sures the distance to the nearest obstacle in front of it; etc. One
interesting prediction problem is how likely the robot hits an
obstacle in the next few seconds based on the sensor signals,
e.g., see [13].

Example 2. Regarding the specific application in this paper,
we can observe many features of an article at a given year,
the task is to predict the number of citations that the paper
receives in k years. Note here k > 0, which potentially goes
to infinity. If k is small, we call it a short-term prediction;
otherwise a long-term prediction.

The contribution of this paper are two principled methods
for solving the problems, which are new to the literatures of
data mining and information retrieval. We explore the use of
reinforcement learning (RL), and propose a model-free and
a model-based method to this goal. The model-free method
extends from the so-called least-squares temporal difference
(LSTD) learning due to Bradtke and Barto [4], and Boyan
[3]. We use LSTD to predict the long-term future citation
counts. LSTD builds two structures on successive observa-
tions, and performs a psudo-least-squares procedure based on
the structures. The model-based method is a generalized form
of linear Dyna, which is a more recent RL architecture due
to Sutton and his colleagues [20]. Our extension can predict
future citation counts in both short and long terms. The key
of the method is a transition kernel among features of papers
at different times. This transition kernel models how citation
counts and paper features change year by year. With the kernel,
we can describe multi-step trends of citation counts through
a projection procedure. We use quite a few novel features for
the problems, including those from citing papers and historical
citation counts as well as those based on authors, keywords,
and venues. Experimental studies were performed on a large

computer science database (DBLP) with more than one million
papers.

The remainder of this paper is organized as follows. Section
II provides a necessary and minimal background on relevant
RL concepts. In Section III, we formulate the citation count
measure as a simple value function in RL, which provides
the basics for this paper. In Section IV, we formally define
the studied prediction problems, and extend LSTD and linear
Dyna to solve them. Section VI-A describes the features we
use for the problems. We discuss related work in Section V.
Section VII concludes the paper.

II. BACKGROUND

In this section, we introduce Markov reward processes
(MRPs), linear value function approximation, LSTD, and
linear Dyna architecture for MRPs.

A. MRPs

We consider a discrete-time, finite state Markov chain. The
state space is S = {1, 2, . . . , N}. The transition probability
from a state s to a state s′ is P(s, s′), for ∀s, s′ ∈ S. At a
time step t, a scalar reward rt is given. The value of a state
s is defined as the expected long-term rewards starting from
the state itself:

V (s) = E

{ ∞∑
t=0

γtrt

}
, s0 = s,

where γ ∈ [0, 1) is a discount factor, and E is the expectation
operator taken with respect to the distribution of the states.

B. Linear Function Approximation

RL is advantageous in the ability of learning the value
function using function approximation, which provides gen-
eralization among states and compact representation. Linear
function approximation refers to approximating V with a linear
parametric function:

V̂ (i) = φ(i)>θ,

where θ is a vector of parameters, and φ(i) is a vector of
features of state i, for ∀i ∈ S. The feature vectors are often
constructed from a number of feature functions. Let R be
the real number space. Given d (d ≤ N ) feature functions
ϕj (·) : S 7→ R, j = 1, . . . , d, the feature vector of state
i is φ(i) = [ϕ1(i), ϕ2(i), . . . , ϕd(i)]>. Note that though the
function is linear in the parameters, a feature mapping can be
any nonlinear function in general.

C. LSTD

The algorithm is shown in Algorithm 1 [4, 3]. The al-
gorithm accumulates coefficients A ∈ Rd×d and b ∈ Rd

across episodes, and solves the linear system to obtain an
approximation of the value function, V̂ = Φθ. The vector
z is called the eligibility trace, wherein λ ∈ [0, 1] is called the
eligibility trace factor. 1 The eligibility trace weights historical

1Note here we used the most common eligibility trace [17]. There are also
other eligibility traces, e.g., see [16].
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Input: The observation sequence Dt.
Output: An approximate value function V̂ = Φθ.

Set t = 0, Initialize A and b
for each episode do

Select an initial state s0
z0 = φ0 /* φt = φ(st) */
for each time step t do

Observing st+1 and rt
A = A+ zt(γφt+1 − φt)>
b = b+ ztrt
zt+1 = λγzt + φt+1

end
end
Solve Aθ + b = 0

Algorithm 1: LSTD(λ) for MRPs.

features exponentially, with more decaying on more distant
states, controlled by λ. If λ = 0, the corresponding LSTD
structures are the one-step correlations between successive
features, and features with the immediate rewards. If λ = 1,
the corresponding LSTD algorithm is shown to be equivalent
to a linear regression procedure [3]. Intermediate λs smooth
historical observations. It can be shown that LSTD(λ) min-
imizes a projected Bellman error function that is dependent
on λ. In practice there are often cases where an intermediate
value performs best [18]. In a summary, the input of LSTD is
a sequence of snippets:

Dt = {< φ(sj), φ(sj+1), rj > |j = 0, 1, . . . , t− 1},

where φ(sj) and a scalar reward rj are our observations at
time step j. The output of LSTD is an approximate value
function.

D. Linear Dyna

Dyna is an integrated architecture for estimating a value
function, in which online learning and planning proceed si-
multaneously. It is based on a lookup table over the states,
and has no generalization capability [19]. Linear Dyna extends
Dyna with a compact linear world model and comes up with
an approximation to the value function [20]. To understand
linear Dyna, it helps understand the so-called linear model
[20] first. In the case of MRPs, the linear model is defined by
a pair 〈F, f 〉, where F ∈ Rd×d is a d× d matrix and f ∈ Rd

is a d-dimensional vector. For any given state s ∈ S, Fφ(s)
estimates the expected feature vector of the state s′ ∼ P(s, ·),
while f>φ(s) estimates the expected reward of leaving state
s in one step. For a good linear model we expect that with
s′ ∼ P(s, ·),

Fφ(s) ≈ E[φ(s′)] and f>φ(s) ≈ E[R(s, s′)],

where the expectation is taken with respect to the distribution
of s′ given s. In the remainder of this paper, we call F the
linear transient model and f the linear reward model.

Linear Dyna integrates a model free algorithm called Tem-
poral Difference (TD) learning, a modeling procedure that
estimates the linear model, and a planning procedure that
solves the linear model in a few loops. The complete linear
Dyna algorithm for MRPs is shown in Algorithm 2. The

Set t = 0; Initialize θ0, F0 and f0
Select an initial state s0
for each time step t do

Observe st+1 and rt
TD(0): /* αt is a step-size, and φt is short for φ(st) */
θt+1 = θt + αt(rt + γφ>

t+1θt − φ>
t θt)φt

Update the linear model 〈Ft, ft〉
Set θ̃0 = θt+1

repeat for p = 0, 1, . . . , τ /*Planning*/
Sample a feature vector φ̃p
φ̃p+1 = Ft+1φ̃p
r̃p = φ̃>

p ft+1

θ̃p+1 = θ̃p + αp(r̃p + γθ̃>p φ̃p+1 − θ̃>p φ̃p)φ̃p
end
Set θt+1 = θ̃τ+1

end
Algorithm 2: Linear Dyna for MRPs. The input and the
output are the same as LSTD.

model-free part is irrelevant to the present paper. The key ideas
of linear Dyna are summarized below. Firstly, the linear model
predicts the expected next feature vector and the expected
reward given a feature vector. Thus the linear model contains
a one-step dynamics of transitioning in the feature space. In
this sense, it helps to think of the linear model as a standard
supervised learning model. Put it in the context of the citation
count prediction problem, for example, applying the linear
transient model to the feature vector of a paper in 2000, we
get a prediction for the feature vector of the paper in the next
year. Secondly, by iterating the linear model multiple times one
can predict multiple steps. The linear model was shown to help
speed up learning and control [20]. It is also shown that solving
the linear model gives the same approximate value function as
the model-free TD learning in the limit [14]. However, it may
be rarely noticed that the linear model and projecting with it
to do multi-step predictions generalizes beyond reinforcement
learning.

III. THE CITATION-TO-GO FUNCTIONS

The key observation leads to this article is a simple and
natural extension of the citation count measure to a special
value function in RL. In particular, we define the “value” of a
paper s at time t by the sum of discounted numbers of citations
in all the subsequent years:

V (s, t) =

∞∑
q=t

γq−tcq, γ ∈ [0, 1)

where cq is the number of citations the paper receives in a year
q. That is, the reward signal here is the yearly citation count
for this problem. Note that when t is the publication year of
the paper and γ approaches one, V (s, t) will be virtually close
to the total number of citation counts for the paper. Introducing
discounting gives a time weighting. When ranking papers
according to V with discounting, it favors papers with many
citations that occur immediately after they are published. This
may lead to the discovery of relatively newly published papers
easier for readers— an important problem people have been
concerned about in recent years, e.g., see [12]. However, we do
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not explore this hypothesis in this paper, but instead use a large
discount factor (and smaller than one) to have a reasonably
close approximation to the citation count measure. We call V
the citation-to-go (CTG) function for short, reminiscent of the
name cost-to-go function widely used in operation research
[2]. The CTG satisfies a simple relationship which is called
Bellman equation in the literatures of dynamic programming
and RL. In particular, for a paper s,

V (s, t) =

∞∑
q=t

γq−tcq = c(s, t) + γV (s, t+ 1),

where c(s, t) = ct. That is, the citation-to-go of a paper from
a specific year on is equal to the number of citations received
by the paper in the year plus the discounted citation-to-go
from the next year. Bellman equation is exploited by various
RL algorithms. In this paper, our algorithms will also take
advantage of this fact.

In practice, we never have data up to the infinite future. A
practical extension is to truncate CTG:

VT (s, t) =

T∑
q=t

γq−tcq,

where T is an integer such that t ≤ T <∞. Clearly, VT (s, t)
is the sum of discounted T − t+ 1 years of citation counts
since year t for paper s. With a discount factor smaller than
one, when T is large enough, VT is a reasonable approximation
to V since the tails are small. VT also satisfies a Bellman
equation. When γ = 1, the tails will be significant. In this
case, not only V isn’t well defined but also we aren’t able to
study V via VT . This is why we do not use γ = 1. In short,
our tasks are to predict the original discounted CTG function
and the truncated discounted CTG function.

IV. MODELING CITATION-TO-GO

Before proceeding, let us remind that by defining the CTG
functions, we have effectively given a Markov formulation for
the citation count prediction problems. At each time step (in
this case a year), we observe the current state of a paper. Time
moves on to the next year, and we observe the most recent state
of the paper as well as the citations it receives during this one-
year period. The next year’s state depends only on the current
state of the paper, i.e., the problem is Markovian. Notably,
there are multiple episodes that proceed simultaneously (one
episode for an individual paper). Adopting the notations from
Section II, we predict the CTG functions with a set of features
{ϕj}j=1,2,...,d. The state of a paper s at year t is mapped into
a feature vector φ(st).

A. The Prediction Problems

An observation history for a paper s from year t0 to year t
is,

O(s, t0, t) = {〈φ(sj), cj , φ(sj+1)〉, j = t0, t0 + 1, . . . , t}.

Note that a paper’s state changes from time to time, and
st0 , st0+1, . . . are the status of the same paper s dur-
ing the period. The data we have for both tasks are the

past observations of some sampled papers, which is, D =
{O(s, t0, t), | for some s ∈ S}. Note that this falls into the
general problem that we described in Section I. In the long-
term prediction task, the goal is to predict the CTG. We tackle
this task by the method of LSTD. In the short-term prediction
task, the goal is to predict the truncated CTG in a variable
number of years. We solve this task by an extension of linear
Dyna. Note that for both tasks, we mean that predictions are
made strictly for the future, i.e., future citation counts starting
from year t (where t is the last year for which we have data).

B. A Supervised Learning Approach

For the observation history O(s, t0, t) of paper s, a natural
supervised learning approach forms a pair 〈φ(st0), Rt

t0〉, where
Rt

t0 is the sum of the discounted future citations from year t0
to year t. Then supervised learning methods are applied to
learn a regression function. This is a natural extension of the
approach taken in [6], [11], and [22] to the temporal prediction
problem. This will be referred to as the singly paired (or pair-
wise for short) approach.

C. LSTD(λ)

However, the above supervised learning predictor ignores
the intermediate feature vectors and citations. Here is another
formulation that considers the intermediate changes:

φ(st0)→ Rt
t0 ; φ(st0+1)→ Rt

t1 ; . . . ;φ(st)→ Rt
t,

in which the left side is treated as the input and the right side is
the output. One can then apply any supervised learning method
to these pairs for all training papers. Interestingly, in the case
of linear regression, this can be shown to be equivalent to
LSTD(1) [3]. We used LSTD(λ) for predicting the long-term
citation counts. A practical issue of implementing LSTD(λ)
is that the matrix may be ill conditioned given finite samples.
Thus some regularization is often necessary. A widely used
practice is to initialize the matrix to −δI , where δ is a positive
scalar and I is the identity matrix, since the matrix is negative
definite in the limit. This can be shown equivalent to using
L-2 regularization for LSTD.

D. A Projection Approach

LSTD(λ) does not predict short term, at least it was not
designed for that purpose. To make short-term predictions,
we propose a multi-step projection procedure based on linear
Dyna, comprising the following two major steps.

Learning. With a state transition from st to st+1, we update
our estimate for a linear model (Fd×d, fd×1). Basically F
models the transitions among the feature vectors of papers,
and f models the one-year citation count dynamics. Given a
feature vector of some paper at a year, applying F predicts
the expected feature vector of the paper in the next year,
and applying f predicts the expected number of citations in
the next year. At a year t, observing the new feature vector,
φ(st+1), and the number of citations within the year, c(s, t),
we update the linear model by

∆F = β [φ(st+1)− Fφ(st)]φ(st)
>,



JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 5

For each paper s to predict from year t to year t+ T
Initialize V̂ (s, t, T ) = 0
Set φ̂t = φ(st)
For k = t, t+ 1, . . . T
ĉk+1 = f>φ̂k
φ̂k+1 = Fφ̂k
V̂ (s, t, T ) = V̂ (s, t, T ) + ĉk+1

end
end

Algorithm 3: Dyna-based projection method for predict-
ing the citation-to-go with the linear model.

and
∆f = β

[
c(s, t)− f>φ(st)

]
φ(st),

where β is a step-size.
The f is nothing but a simple predictor about the one-

year citation count. The linear transient model F is more
interesting because there are multiple predictions that can be
made according to it. Figure 2 illustrates the idea. In fact, each
row of F is a predictor. In the example shown in the figure,
the first row of F is a predictor for the number of citations
in one year for the first author, the second row predicts the
number of citations in one year for the last author given a
feature vector; etc. Thus F is like a single-layer perceptron.
This insight is new to the RL literature as well.

Projection. To model multi-step growth of citation counts,
one continuously projects the feature vectors with F along
the way, and combines with f to form the predictions for the
citation count year by year. For example, suppose we are to
make a 2-year prediction for the citation count of a paper s.
We are provided with the features of the paper at the year,
φ(st), which is the starting point for multi-step projections.
The next year’s citation count is predicted as, ĉ1 = f>φ(st).
To make predictions about the citation count of the second
year (i.e., year t + 2), we have to know the features of the
paper at year t+1. However, φ(st+1) is not available because
it is about the future. This is where F plays a role. We do not
have φ(st+1), but we can predict it with F , in particular, by
the projection, φ̂t+1

def
= Fφ(st). Then the citation count of the

second year is naturally predicted as ĉ2 = f>φ̂t+1. That is,
we use a prediction (i.e., that of the next feature) to generate
another prediction (i.e., that of the number of citations for
the year after the next). More steps of predictions are similar.
Algorithm 3 shows the details of this procedure. It helps to
think of the algorithm as using the linear model to “grow” the
citation count up to a future year by extrapolating for a certain
number of steps from a feature vector.

To predict for different numbers of years, this approach
requires only one-time training (which involves learning the
linear model), while the pair-wise supervised approach has to
train a separate predictor for different numbers of years.

V. RELATED WORK

There are a few recent papers dealing with citation count
predictions. As mentioned earlier, Yan et. al. studied the
problem of generalizing predictions about the citation count
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#CC of the citing 

papers

#CC of first author

... ...
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Linear transient model 

Fig. 2: Illustration of the linear transient model. The linear
transient model can be viewed as a collection of multiple
predictors. For example, the left side can be the feature vector
of some paper in year 2000. The right side is then the
prediction of its feature vector in the next year according to
the model.

in the same period [22]. Fu et. al.’s is the earliest relevant
work we found [7, 6]. They built prediction models that
predict citation counts of biomedical publications within a
horizon of ten years. Their models employed content and
bibliometric based features in combination with support vector
machine methods. In [11] they built predictors for articles in
the Bioinformatics journal within four years of publication,
using features from tokens in the abstracts and journal sections.
Unfortunately, the problem studied in all these work is to
predict the number of citations that already happened. While
their problem is well motivated by machine learning and other
literatures, predicting about future citation counts is certainly
more interesting.

There are also some citation count prediction methods that
are not obviously machine learning based. These methods
usually involve models constructed from crafted heuristics
[5, 15]. However, these models are hand tuned, thus leaving
how to set their parameters a pressing question.

VI. EMPIRICAL RESULTS

We conducted experiments on DBLP, a large computer
science citation graph. The DBLP collection we use involves
about one million authors, seven thousand venues, one and a
half million papers and two million cross citations [21].

A. Features

We spent quite a bit effort in engineering the features. In
particular, the features of a paper at a specific year are as
follows.

1) The number of citations for the venue where the paper is
published. Similar to the venue rank features [22], this
encodes the reputation of venues.

2) The number of papers that are published at the venue
until the year.

3) The impact factor of a venue, which is defined by the
number of citations divided by the number of papers
published at the venue until the considered year.
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4) Venue life, which is the number of years that the
venue has been around until the year. We estimated the
establishment year of a venue by the earliest year when
there are one or more papers published at it according
to the database. This estimation works very well in our
experience.

5) The author features of a paper comprise the maximum,
average, and sum in the author properties of the papers.
An author’s properties are the citation count, impact
factor, and the number of coauthors of the author. This
feature provides a generalization over authors.

6) Identity features. Feature 5 is compressed, from which
the identity of the authors is not recoverable. It is in-
teresting to see whether identity-based features perform
better. Each author occupies an entry of the feature
vector, the feature value corresponding to the citation
count of the author until the considered year.

7) Content features from the titles were also combined. In
particular, about 300, 000 keywords were first extracted
using NLTK (http://www.nltk.org). They were measured
in a similar way to author features, corresponding to the
number of containing papers, citation count and impact
factor, and number of concurrent keywords, respectively.
They were encoded also in a similar way to the author
features.

8) Citation features. The citation features are based on the
intuition that if a paper is cited by a famous author or
a popular paper then it may be likely to receive many
future citations. In particular, we encoded a paper at a
specific year with the latest numbers of citations of the
papers that cite it, together with the latest numbers of
citations of the authors of these citing papers.

9) Historical citation features. Up to 10 years of historical
citation count data for each paper were considered if
they are available.

In addition, a constant feature was also used. Encoding papers
with author, venue, and content information is a widely known
practice in machine learning based classification. For citation
count prediction, many of them have been practiced by [22]
and [6]. Feature 2 to Feature 5 are mildly new for the
problems. Feature 7 to Feature 9 are brand new, some of
which are very helpful to the problems as will be seen in
the experiment section.

B. The Long-term Prediction

Experiment setup. Throughout this experiment we are in the
year 2002 (“now”). This is to ensure that there will be suffi-
cient data to evaluate our predictor about the future. Training
papers were those published before 1990. The training period
considered is between year 1990 and “now”. The discount
factor is 0.9. After applying LSTD to the training set, we
would like predict the sum of discounted numbers of future
citations up to 2011. Specifically, this means with the learned
weights and the feature vector of some paper in 2002, we
should be able to make a prediction of the citation-to-go until
2011 for the paper. The true citation counts for the remaining
years (2002-2011) were used in computing the (truncated)

CTG function for evaluation. We varied the test set, and
studied the cases of predicting for both old papers and newly
published papers.

We compared LSTD against the pair-wise supervised learn-
ing approach. The input are the feature vectors of the training
papers at year 1990, and the output are the truncated CTGs
of the papers between 1990 and 2002. In particular, linear
regression and support vector regression (SVR) were studied.
After a regression function is learned, we can predict the
citation-to-go until 2011 for a paper given its features in 2002.

1) Results of Predicting for Old Papers: First we tested
the predictors on the training papers. To recap what’s going
on, we’ve learned the predictors from the training papers
(published before year 1990) with their observations between
1990 and 2002. Let’s predict the citation count of these papers
up to 2011.

To begin with, we observed that the pair-wise supervised
learning is unstable for temporal prediction. In particular, even
if the training error is small, the test error can blow up. Figure
3 (a) shows the linear regression fit of the past citation count
until 2002, which looks reasonably good. However, using
the model to predict the future citation count until 2012 is
unstable, as shown in Figure 3 (b). It appears counter-intuitive
at first sight. Since the correlation of the past citation count and
future citation count is high (shown in Figure 3 (c)), one may
expect to fit the future citation well by fitting a good model
for the past citation count data. The catch is that the training
input are the features in year 1990, but when predicting for the
future, the input features are in year 2002. The weight vector
learned by linear regression from the past data is expected to
be used in combination with similar features to those used in
training. However, the features for training and testing in the
case of temporal prediction are very different, e.g., typically
the magnitude of the features in 2002 is much bigger than
those in 1990. So applying a paired-wise model learned from
past citation count data to predicting future citation count is
technically unsound. The case of SVR is similar, and thus
figures are omitted here. This special difficulty is unique
to temporal prediction especially because in the previously
studied problem the input features for training and testing are
in the same year. Figure 3 (d) shows the results of LSTD(0)
for predicting the future citation count. Note that LSTD does
not have the problem of the paired-wise supervised learning
approach. The reason is that LSTD considers intermediate
features, from which the algorithm actually extracts growth
information (i.e., the linear model).

The effects of λ. In Figure 4, we compared the performance
of LSTD(λ), where we employed L-2 regularization. We
tuned the regularization factor (δ) and only showed those that
performed best. Note that in comparing LSTD(λ) usually the
same regularization factor is applied to LSTD(λ) for different
λ. That is not a fair comparison, because λ influences the
magnitude of entries of the LSTD matrix, which implies that
different regularization has to be used for different λ. The
result here confirms that the performance of LSTD(λ) greatly
depends on the regularization factor. Generally different λ
requires a different regularization factor for LSTD to perform
the best. In particular, in this example, larger λ performs better
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Figure 3: (a): Linear regression model of the past citation count of the train-
ing papers. (b): The instability of the linear regression model for predicting
future citation counts of the training papers. (c): The correlation between
the past citation count and future citation count of the training papers. (d):
LSTD(0) for predicting future citation counts of the training papers.
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Fig. 4: The RMSE of LSTD(λ) for predicting the future
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when the regularization factor is well chosen. However, it is
also noticeable that the larger λ is, the more sensitive LSTD(λ)
is to the regularization factor. This means that in practice
tuning the regularization factor is harder for LSTD with larger
λ.

2) Results of Predicting for New Papers: That LSTD works
well for predicting the future citation counts of the training
papers shows that LSTD successfully generalizes over the time
for this group of papers. A more challenging question is, does

LSTD generalize well to the other papers, especially to those
newly published papers? This requires that the algorithm gen-
eralizes in both papers and time. In fact, this is a fundamental
question that a temporal machine learning predictor has to
address. To study this question, we studied newer papers, in
particular, the following three groups of papers, papers that
are published between 1990 and 1995, between 1995 and
2000, and between 2000 and 2002. Note that these papers
are obviously not in the training set.

Figure 5 shows the results of predicting for these groups
of newly published papers using LSTD(0). The points marked
with the cross are the true CTG, and the points marked with
the star are the predictions. In addition, we mark papers
published in different years with different colors to have a
better resolution. In each group of papers, newer papers tend
to have more citations, and predicting for them has a larger
variation. The prediction is much more accurate for the first
group of papers than for the other two groups of newer papers.
This indicates that LSTD generalizes best to the papers that are
published a few years after the beginning of the observation
period (year 1990 in this case). Figure 6 summarizes the
performance of LSTD(λ) with several typical regularization
factors. Again the performance of LSTD(λ) depends greatly
on the regularization factor. Unlike Figure 4 which shows that
large λs perform the best in predicting the future citation of
the training papers, Figure 6 shows that LSTD(λ) perform
similarly for all λ in predicting for the newer papers when the
regularization factor is well tuned. It is also noticeable that the
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LSTD(λ) predictions are less accurate for newer papers for all
λ.

C. Short-term Predictions

We also conducted experiments of predicting future k years
of citation counts for both old and new papers. Figure 7
illustrates the performance of Dyna-based projection method.
Firstly, as k increases the citation count is larger and has more
variation, and prediction has larger errors. Note the conclusion
here is different from those by [22], who discovered that in
their problem predicting for the citation count in a larger time
span is more accurate than for that in a smaller one. This
illustrates a unique challenge in temporal prediction. Secondly,
it can be observed that for large k the performance of the
projection method gets closer to the LSTD algorithm. For one
thing, this is because for large k the tails of the CTG become
smaller. For the other, when k goes to infinity, Dyna method is
theoretically equivalent to LSTD [14, 20] if one has a perfect
model. However, in practice the model always has some errors
like in this problem. We observed that Dyna(10) is much worse
than LSTD. Besides the model error, that the magnitude of the
reward signal being very large also contributes to the long-term
prediction error of Dyna.

Finally, Figure 8 summarizes the performance of Dyna-
based projection method for predicting k years of citation
count data in the future, where k = 1, 2, . . . , 8. For all values
of k, across all groups of papers, predicting more years into the
future has larger errors. For the same k, predicting for newer
papers has larger errors. This is consistent with the long-term
citation count prediction experiment. Similar to the case of
long-term prediction, the pair-wise approach is unsound for
making short-term temporal predictions.

D. Effects of Features

Table I summarizes the performance of various feature
combinations for making 1, 5, 10 years of predictions. The 10-
year prediction was made by LSTD(0), and the other two were
made by Dyna-based projection method. Generally the best
performance is given by the combination of all the features
for all prediction tasks. We started with the non-identity
bibliometric features (authors, keywords and venues), then
kept adding features to see if there is improvement. The results
show that adding historical citation count features is most
useful. Adding citation based features gives a slightly better
performance than adding author identity features. The identity
features are especially useful for predicting for old papers.
When predicting for newer papers, however, the improvement
of adding the identity features is smaller. This may be due to
the fact that many of the authors of the old papers (used for
training) do not appear in new papers.

VII. CONCLUSION

We studied the problem of predicting multi-step trends of
citation counts given data only from the past. While we are
not sure we are the first to study this practical problem,
all the relevant work we found is limited to predicting the
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Fig. 8: Summary of the Dyna projection method for predicting
short-term citation count.

number of citations that already happened. In essence their
predictors generalize only in papers published during the same
period, but ours generalizes also in time. We showed that
the pair-wise supervised learning approach, widely used by
previous research for the former problem, is unstable for
making temporal predictions. We generalize citation count to
a general value function, and explore the use of reinforcement
learning for temporal citation count predictions. In particular,
we use LSTD for making long term predictions about citation
count, and extend linear Dyna to do short-term predictions.
Empirical results on DBLP show that both LSTD methods
and Dyna-based method produce stable predictions. Some
conclusions and observations are as follows. First, predicting
citation count deeper into the future is more difficult because
it has more uncertainty and variations. Second, the perfor-
mance of LSTD(λ) depends greatly on L-2 regularization,
and requires different regularization for different λ. LSTD(λ)
perform similarly for all values of λ for newly published
papers if the regularization factor is well tuned, though for
predicting old papers LSTD with large λs perform better than
those with small λs. Furthermore, the regularization factor for
larger λ is harder to tune. Third, results also show that, for
both short- and long-term predictions, it is less accurate for
more recent papers. This should be due to the fact that more
recent papers contain new information (content, authors, etc.).
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TABLE I: Comparison of various features for making short-term and long-term predictions. b stands for using non-identity
bibliometric features based on authors, keywords and venues. a stands for using identity-based author features. r stands for
using historical reward (citation) features. c stands for using features based on the citing papers.

Papers-before-90 Papers-90-95 Papers-95-00 Papers-00-02
1-year 5-year 10-year 1-year 5-year 10-year 1-year 5-year 10-year 1-year 5-year 10-year

b 3.9 16.1 26.4 4.0 16.6 27.1 4.9 20.4 29.7 6.4 29.7 40.9
b+ a 3.6 14.9 23.8 3.8 15.7 25.7 4.8 20.2 29.7 6.4 29.7 40.9
b+ c 3.3 14.6 23.5 3.7 15.1 25.7 4.7 19.3 30.6 6.1 28.5 39.1
b+ r 1.4 6.8 11.0 1.8 7.5 12.0 2.5 11.6 19.2 4.0 19.2 27.3
b+ a+ r 1.4 6.1 10.6 1.8 7.3 11.9 2.5 11.6 19.2 3.8 18.7 27.3
b+ c+ r 1.4 6.0 10.3 1.8 7.1 11.7 2.2 11.7 19.0 3.6 18.3 27.2
b+ a+ c+ r 1.4 6.1 10.0 1.8 7.1 11.2 2.1 11.3 19.1 3.6 18.2 27.0
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