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Abstract

We propose a new class of algorithms that di-
rectly precondition the TD update. We then
focus on a new preconditioned algorithm and
prove its convergence. Empirical results on
the new algorithm shall be presented in a de-
tailed version of this paper.

1. Direct Preconditioned TD
algorithms

Previous work (Yao & Liu, 2008) relates LSTD, LSPE,
and iLSTD via a class of Preconditioned TD (PTD)
algorithms. This paper explores yet another class of
preconditioned algorithms.

We consider on-policy policy evaluation using a linear
function approximation (Sutton & Barto, 1998). For
each state 7, there is a corresponding feature vector
¢(i) € R™ where n < N. On a transition from state s;
to state s;+1, we obtain a reward r;, and apply TD(0):

Orp1 = 0 + iy,

where ¢, = ¢(s¢), 8¢ = 14 + V07 i1 — 0 ¢y and oy is
a positive scalar. The term, d;¢;, is usually referred
as the TD-update. For the ergodic problem, TD(0)
converges to a solution of the system of equations

E[6¢] = A0*+b=0,A = E[¢i(¢r+1—¢¢)", b = Elgyry].

Note that the PTD algorithms in (Yao & Liu, 2008)
take the following form:
Or41 =0 + P (A + by),
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Table 1. Connections of recent TD methods. “Alg” is short
for “Algorithm”, and “Place” is where preconditioning
happens.

Alg Place Preconditioner | Complexity
LSTD | Residual —A; O(n?)
NTD | TD update — A O(n?)
iLSTD | Residual I O(n?)
TD TD update I O(n)
LSPE | Residual Dy O(n?)
FPKF | TD update D, O(n?)

where P, is an invertible preconditioner matrix, and
Ay, by are some estimations of A, b respectively. Here
we propose another class of preconditioned TD algo-
rithms, cast as

9t+1 = 9,5 + oatP;l(St(bt. (1)

The new class of algorithms precondition the TD-
update directly, rather than the residual vector, A;0;+
b;. In (1), if we use P, = I, we recover TD; how-
ever, if P, = Dy, where D, is some estimation of
D = E[¢l' ¢1], we obtain the Fixed-point Kalman Fil-
ter (FPKF) (Choi & Van Roy, 2006); and if P, = — A,
we get an algorithm that is reminiscent of Newton
method, which we call the Newton TD (NTD) algo-
rithm.

2. The Newton TD Algorithm

The algorithms updates according to

9t+1 = 9t - OétAt_l(St(bta (2)
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where A; " are recursively obtained as

e BAT e (yra1 — ) A7

_ 1 -1 _
-5 < ! 1= B + Be(vpig1 — (bt)/A;(l;;t

We will make the following two assumptions:

(A1) The step-sizes oy, B, t > 0 satisfy a(t),b(t) >
0 for all t. Further, >, oo = > ,0 = o0,
2007, 20 B < 00, ar = o).

(A2) The iterates A;, t > 1 satisfy sup || 4; |,
t

sup | A7 I< oo

(A1) essentially implies that we have decreasing step-
size sequences and in addition a; — 0 faster than 3;
does. In effect, it implies that the recursion governed
by [, is faster as opposed to the one governed by ay.
(A2) ensures that the iterates A;, A;*, ¢t > 1 do not
blow up as t — oo. A sufficient condition for (A2) is
the following: Let there exist scalars ¢1,co > 0 with
c1 < co such that ¢ || z [|2°< |Re(2T4;2)| < e2 || 2 ||%,
for all £ > 0, z € R™. The above implies that the
real parts of the eigenvalues of A; remain either in the
interval [—ca, —cq] or else in the interval [cq, ¢2]. Thus
the real parts of the eigenvalues of A; ' shall remain

either in the interval [~ —é] or else in the interval

c1
[é, é] This will ensure that the eigenvalues of A; !
remain absolutely uniformly bounded both from above

as well as away from zero.

For any n x n-matrix B, we define its norm || B || as
the norm induced from the corresponding vector norm
and is defined as || B ||= max(zern||z|=1} || Bz ||. We
have the following convergence result.

Theorem 1 (Convergence of NTD). Under assump-
tions (A1)-(A2), 0y — 0* as t — oo with probability
one, where §* = —A~1b.

Proof. The proof relies on a two-timescale analysis
(see (Al)). Note that the recursion (3) corresponds
to the faster recursion while (2) is the slower one.
Thus from the timescale of (2), i.e., that correspond-
ing to {a:}, recursion (3) appears equilibrated while
from the other timescale corresponding to {f:}, the
recursion (2) is quasi-static. Consider now (3). Using
a standard convergence analysis under (A2), it can
be seen that A4, — A as t — oco. Now note that
AT = AT =[] ATHA = ApATT | <) AT
sup, | A7t |||l Ar — A ||— 0 ast — oo, in lieu
of (A2) and the above. On the other hand, since
ar = o(;), one can write (2) as 0,11 = 0; — 5:&;, where

& = (%Atlgt@) =o0(1) by (Al). Hence, along the
¢

faster timescale (i.e., the one corresponding to {3:}),
A7t — A71 while 6; ~ 0 (i.e., the latter is quasi-
static). Next consider recursion (2) along its timescale
(i.e., the slower one corresponding to {ay}) with A;*
equilibrated. Thus consider 0y, = 6; — ay A~ 15, ¢;.
Let F; = o(¢s,s < t), t > 1. Now rewrite the above
as 9t+1 = 9,5 — O[tA_lE[(Stgbt | .7:15] —OétA_l((Stht —
E[6,¢¢ | Fi]). Define the sequence {N,} as follows:
Ny = Yt g oA (0sps — Elds6s | Fu]). It is easy
to see that {INy, F;} is a martingale sequence. By the
martingale convergence theorem, under (A1)-(A2) and
the fact that ¢4 are uniformly bounded features, one
can see that {N;, F,} is also convergent. Thus, for
any T > 0 with np = min{m > n | Z;n:n a, > T},
we have that Y07 a, A7 (005 — E6sds | Fs]) — 0
a.s. as n — o0o. Consider now the ordinary differential
equation (ODE)

f= —AH(AO +b) = —(0 + A7 1D). (4)

Let h(0) = —(0 + A~'b) i.e., the RHS of (4). Then
h(-) is a Lipschitz continuous function implying that
the ODE (4) is well posed. Further, §* = —A~1b is
the unique asymptotically stable equilibrium for (4).
Now let hoo(0) = Tlilgo h(r®)/r = —0. Consider an as-

sociated ODE §= hoo () = —6. For the latter ODE,
the origin is an asymptotically stable equilibrium. The
recursion (2) is now uniformly bounded from Theorem
2.1 of (Borkar & Meyn, 2000). The claim now follows
as a consequence of the Hirsch’s lemma (cf. Theorem 1,
pp-339 of (Hirsch, 1989)) in a similar manner as The-
orem 2.2 of (Borkar & Meyn, 2000). This completes
the proof. O
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