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Abstract

We propose a new class of algorithms that di-
rectly precondition the TD update. We then
focus on a new preconditioned algorithm and
prove its convergence. Empirical results on
the new algorithm shall be presented in a de-
tailed version of this paper.

1. Direct Preconditioned TD
algorithms

Previous work (Yao & Liu, 2008) relates LSTD, LSPE,
and iLSTD via a class of Preconditioned TD (PTD)
algorithms. This paper explores yet another class of
preconditioned algorithms.

We consider on-policy policy evaluation using a linear
function approximation (Sutton & Barto, 1998). For
each state i, there is a corresponding feature vector
φ(i) ∈ Rn where n < N . On a transition from state st

to state st+1, we obtain a reward rt, and apply TD(0):

θt+1 = θt + αtδtφt,

where φt = φ(st), δt = rt + γθT
t φt+1 − θT

t φt and αt is
a positive scalar. The term, δtφt, is usually referred
as the TD-update. For the ergodic problem, TD(0)
converges to a solution of the system of equations

E[δφ] = Aθ∗+b = 0, A = E[φt(φt+1−φt)
T , b = E[φtrt].

Note that the PTD algorithms in (Yao & Liu, 2008)
take the following form:

θt+1 = θt + αtP
−1
t (Atθt + bt),
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Table 1. Connections of recent TD methods. “Alg” is short
for “Algorithm”, and “Place” is where preconditioning
happens.

Alg Place Preconditioner Complexity
LSTD Residual −At O(n2)
NTD TD update −At O(n2)

iLSTD Residual I O(n2)
TD TD update I O(n)

LSPE Residual Dt O(n2)
FPKF TD update Dt O(n2)

where Pt is an invertible preconditioner matrix, and
At, bt are some estimations of A, b respectively. Here
we propose another class of preconditioned TD algo-
rithms, cast as

θt+1 = θt + αtP
−1
t δtφt. (1)

The new class of algorithms precondition the TD-
update directly, rather than the residual vector, Atθt+
bt. In (1), if we use Pt = I, we recover TD; how-
ever, if Pt = Dt, where Dt is some estimation of
D = E[φT

t φt], we obtain the Fixed-point Kalman Fil-
ter (FPKF) (Choi & Van Roy, 2006); and if Pt = −At,
we get an algorithm that is reminiscent of Newton
method, which we call the Newton TD (NTD) algo-
rithm.

2. The Newton TD Algorithm

The algorithms updates according to

θt+1 = θt − αtA
−1
t δtφt, (2)
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where A−1
t are recursively obtained as

A−1
t+1 =

1

1 − βt

(

A−1
t −

βtA
−1
t φt(γφt+1 − φt)′A

−1
t

1 − βt + βt(γφt+1 − φt)′A
−1
t φt

)

.

(3)

We will make the following two assumptions:

(A1) The step-sizes αt, βt, t ≥ 0 satisfy a(t), b(t) >
0 for all t. Further,

∑

t
αt =

∑

t
βt = ∞,

∑

t
α2

t ,
∑

t
β2

t < ∞, αt = o(βt).

(A2) The iterates At, t ≥ 1 satisfy sup
t

‖ At ‖,

sup
t

‖ A−1
t ‖< ∞.

(A1) essentially implies that we have decreasing step-
size sequences and in addition αt → 0 faster than βt

does. In effect, it implies that the recursion governed
by βt is faster as opposed to the one governed by αt.
(A2) ensures that the iterates At, A−1

t , t ≥ 1 do not
blow up as t → ∞. A sufficient condition for (A2) is
the following: Let there exist scalars c1, c2 > 0 with
c1 < c2 such that c1 ‖ z ‖2≤ |Re(zT Atz)| ≤ c2 ‖ z ‖2,
for all t ≥ 0, z ∈ Rn. The above implies that the
real parts of the eigenvalues of At remain either in the
interval [−c2,−c1] or else in the interval [c1, c2]. Thus
the real parts of the eigenvalues of A−1

t shall remain
either in the interval [− 1

c1
,− 1

c2
] or else in the interval

[ 1

c2
, 1

c1
]. This will ensure that the eigenvalues of A−1

t

remain absolutely uniformly bounded both from above
as well as away from zero.

For any n × n-matrix B, we define its norm ‖ B ‖ as
the norm induced from the corresponding vector norm
and is defined as ‖ B ‖= max{x∈Rn|‖x‖=1} ‖ Bx ‖. We
have the following convergence result.

Theorem 1 (Convergence of NTD). Under assump-
tions (A1)-(A2), θt → θ∗ as t → ∞ with probability
one, where θ∗ = −A−1b.

Proof. The proof relies on a two-timescale analysis
(see (A1)). Note that the recursion (3) corresponds
to the faster recursion while (2) is the slower one.
Thus from the timescale of (2), i.e., that correspond-
ing to {αt}, recursion (3) appears equilibrated while
from the other timescale corresponding to {βt}, the
recursion (2) is quasi-static. Consider now (3). Using
a standard convergence analysis under (A2), it can
be seen that At → A as t → ∞. Now note that
‖ A−1

t − A−1 ‖=‖ A−1(A − At)A
−1
t ‖ ≤‖ A−1 ‖

supt ‖ A−1
t ‖‖ At − A ‖→ 0 as t → ∞, in lieu

of (A2) and the above. On the other hand, since
αt = o(βt), one can write (2) as θt+1 = θt−βtξt, where

ξt =

(

αt

βt

A−1
t δtφt

)

= o(1) by (A1). Hence, along the

faster timescale (i.e., the one corresponding to {βt}),
A−1

t → A−1, while θt ≈ θ (i.e., the latter is quasi-
static). Next consider recursion (2) along its timescale
(i.e., the slower one corresponding to {αt}) with A−1

t

equilibrated. Thus consider θt+1 = θt − αtA−1δtφt.
Let Ft = σ(φs, s < t), t ≥ 1. Now rewrite the above
as θt+1 = θt − αtA−1E[δtφt | Ft] −αtA−1(δtφt −
E[δtφt | Ft]). Define the sequence {Nt} as follows:
Nt =

∑t

s=0
αsA−1(δsφs − E[δsφs | Fs]). It is easy

to see that {Nt,Ft} is a martingale sequence. By the
martingale convergence theorem, under (A1)-(A2) and
the fact that φs are uniformly bounded features, one
can see that {Nt,Ft} is also convergent. Thus, for

any T > 0 with nT

&
= min{m ≥ n |

∑m

r=n
αr ≥ T },

we have that
∑nT

s=n
αsA−1(δsφs − E[δsφs | Fs]) → 0

a.s. as n → ∞. Consider now the ordinary differential
equation (ODE)

.

θ= −A−1(Aθ + b) = −(θ + A−1b). (4)

Let h(θ) = −(θ + A−1b) i.e., the RHS of (4). Then
h(·) is a Lipschitz continuous function implying that
the ODE (4) is well posed. Further, θ∗ = −A−1b is
the unique asymptotically stable equilibrium for (4).
Now let h∞(θ) = lim

r→∞
h(rθ)/r = −θ. Consider an as-

sociated ODE
.

θ= h∞(θ) = −θ. For the latter ODE,
the origin is an asymptotically stable equilibrium. The
recursion (2) is now uniformly bounded from Theorem
2.1 of (Borkar & Meyn, 2000). The claim now follows
as a consequence of the Hirsch’s lemma (cf. Theorem 1,
pp.339 of (Hirsch, 1989)) in a similar manner as The-
orem 2.2 of (Borkar & Meyn, 2000). This completes
the proof.
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