
Dyna(k): A Multi-Step Dyna Planning

Hengshuai Yao hengshua@cs.ualberta.ca
Rich Sutton sutton@cs.ualberta.ca

Department of Computing Science, University of Alberta, Edmonton, AB Canada T6G2E8

Shalabh Bhatnagar shalabh@csa.iisc.ernet.in

Department of Computer Science and Automation, Indian Institute of Science, Bangalore, India 560 012

Dongcui Diao creece.diao@gmail.com

School of Economics and Management, South China Normal University, Guangzhou China 518055

Csaba Szepesvári szepesva@cs.ualberta.ca

Department of Computing Science, University of Alberta, Edmonton, AB Canada T6G2E8

Abstract

Dyna planning is an efficient way of learning
from real and imaginary experience. Exist-
ing tabular and linear Dyna algorithms are
single-step, because an “imaginary” feature
is predicted only one step into the future. In
this paper, we introduce a multi-step Dyna
planning that predicts more steps into the
future. Multi-step Dyna is able to figure out
a sequence of multi-step results when a real
instance happens, given that the instance it-
self, or a similar experience has been imag-
ined (i.e., simulated from the model) and
planned. Our multi-step Dyna is based on a
multi-step model, which we call the λ-model.
The λ-model interpolates between the one-
step model and an infinite-step model, and
can be learned efficiently online. The multi-
step Dyna algorithm, Dyna(k), uses the λ-
model to generate predictions k steps ahead
of the imagined feature, and applies TD on
this imaginary multi-step transitioning.

1. Introduction

Dyna combines knowledge from planning on imaginary
experience with that from learning over the real in-
stances. A Dyna agent can be thought of as mimicking
human learning by imagining situations that happened

Appearing in Proceedings of the ICML/UAI/COLT
Workshop on Abstraction in Reinforcement Learning,
Montreal,Canada, 2009. Copyright 2009 by the au-
thor(s)/owner(s).

much less or did not happen at all. The key idea is
to maintain a world model from real interactions with
the environment, and apply the world model to gen-
erate (i.e., simulate) virtual experience. Planning and
learning in Dyna interleave and reinforce each other:
at each time step, planning starts from the learned pa-
rameters; and the improved parameters after planning
are passed back for learning. Planning helps learn-
ing in that it provides better parameters for learning
and decision making. In turn, we get improved expe-
rience that helps refine the world model and thereby
also improve planning. In Dyna, we can use various
learning algorithms for learning and planning. The
classical Dyna uses Temporal Difference (TD) meth-
ods (Sutton, 1988; Bertsekas & Tsitsiklis, 1996; Sutton
& Barto, 1998).

Existing Dyna planning algorithms are single-step
(Sutton, 1990; Sutton & Barto, 1998; Sutton et al.,
2008), because they only simulate one step ahead.
This is many times insufficient as one does not exploit
in such a case all possible future results. In this paper,
we give Dyna planning the multi-step prediction power
by using a multi-step model of the world. We first ex-
tend the tabular multi-step model of (Sutton, 1995)
to linear function approximation, and based on the
extension we propose the λ-model of Dyna, which in-
terpolates between the one-step model and the infinite-
step model and can be learned efficiently on line. Our
multi-step Dyna algorithm, Dyna(k), uses the λ-model
to generate k steps ahead prediction of the imagined
experience and applies TD learning on it. One extreme
of Dyna(k), Dyna(∞), is very efficient in computation
as each planning step requires only O(n) computation,

A Multi-Step Dyna Planning

where n is the number of feature functions. The other
extreme of Dyna(k), Dyna(1), corresponds to a single-
step Dyna that is similar to the existing linear Dyna
(Sutton et al., 2008). We compare Dyna algorithms for
policy evaluation in the setting of Boyan chain, and the
results show that multi-step Dyna is much faster than
regular single-step Dyna.

2. TD(0) and Dyna

2.1. TD(0) Algorithm

Given a state space S = {1, 2, . . . , N}, the problem of
policy evaluation is to predict the long-term reward of
a policy π for every state s ∈ S:

V π(s) =
∞∑
t=0

γtr(st, st+1), 0 < γ < 1, s0 = s,

where r(st, st+1) is the reward received by the agent
at time t. Given n (n ≤ N) feature functions ϕj (·) :
S 7→ R, j = 1, . . . , n, the feature of state i is φ(i) =
[ϕ1(i), ϕ2(i), . . . , ϕn(i)]′.Now V π can be approximated
by V̂ π = Φθ, where θ is the weight vector, and Φ
is the feature matrix whose entries are Φi,j = ϕj(i),
j = 1, . . . , n; i = 1, . . . , N . At time t, if we observe
a resulting state st+1 and a reward rt, a TD error is
realized by

δt = rt + γθ′tφt+1 − θ′tφt,

where φt corresponds to φ(st). We use prime ‘′’ to
denote the transpose operator throughout this paper.
According to the TD error and the one-step feature,
TD(0) adjusts the weights by

θt+1 = θt + αtδtφt,

where αt is a positive step-size.

2.2. Linear Dyna

Most of the earlier work on Dyna (Sutton, 1990; Sut-
ton & Barto, 1998) uses a lookup table representation
of states. Modern Dyna is more advantageous in the
use of linear function approximation (Sutton et al.,
2008). We denote the state transition probability ma-
trix of policy π by Pπ, whose (i, j)th component is
Pπi,j = Eπ{st+1 = j|st = i}; and denote the expected
reward vector of policy π by Rπ, whose ith compo-
nent is the expected reward of leaving state i in one
step. Linear Dyna uses a compressed transition model
of policy π:

(Fπ)′ = (Φ′DπΦ)−1 · Φ′DπPπΦ,

and
fπ = (Φ′DπΦ)−1 · Φ′DπRπ,

where Dπ is an N ×N matrix whose diagonal entries
correspond to the steady state distribution under pol-
icy π. Here Dπ arises because policy evaluation is
done on the trajectories following policy π (i.e., the
‘on-policy’ case).

Dyna repeats some steps of planning in each of which
it proposes a sampled feature φ̃ (we use ∼ to denote
an imaginary experience). The next feature is shifted
from the original i.e., φ̃(1) = Fπφ̃. The rewards leaving
feature φ̃ in one step correspond to r̃(1) = φ̃′fπ. The
imaginary experience is therefore φ̃ → (φ̃(1), r̃(1)).
Dyna treats this imaginary experience as if it were a
real experience, and applies TD learning over it in the
following way:

θ̃ := θ̃ + α(r̃(1) + γθ̃′φ̃(1) − θ̃′φ̃)φ̃,

where θ̃ is the parameter θ in the planning step.

Matrix Fπ and vector fπ constitute the world model
of linear Dyna that are estimated at every time step
using a gradient descent recursion:

Fπt+1 = Fπt + αt(φt+1 − Fπt φt)φ′t,

fπt+1 = fπt + αt(rt − fπt
′φt)φt, (1)

respectively, where the features and reward are all
from real world experience. Under some assumptions,
it can be proved that for policy evaluation, the fixed-
point of linear Dyna is the same as that of TD(0) (Sut-
ton et al., 2008), which is the solution to a linear sys-
tem of equations Aπθ∗ + bπ = 0, where

Aπ = Φ′Dπ(γPπ − I)Φ, bπ = Φ′DπRπ,

with I being the identity matrix.

3. The Multi-step Dyna

The general description of multi-step Dyna is shown
in Figure 1. Given a situation, multi-step Dyna fig-
ures out the sequences of the results in one step, two
steps, etc, through many “dreams” (i.e., imaginary or
model-based experiences) that are connected together;
the input to one (dream) being the output from the
previous. Predicting is similar to dreaming, however,
the input is no longer a proposal but a real instance.
When a real instance occurs, multi-step Dyna is able to
predict a sequence of multi-step results given that the
instance itself or a similar experience has been imag-
ined and planned.

In Section 4 we propose a multi-step model with linear
function approximation, the λ-model, which is very ef-
ficient in estimating online; and in Section 5 we present
the Dyna(k) planning algorithm based on the λ-model.

A Multi-Step Dyna Planning

Daydreaming Predict

Dreaming

Dreaming Dreaming Dreaming

Dreaming

Real Time;
 Real experience

Predict
PredictPredict

Multi-step

Multi-step

Single-step

Single-step

Figure 1. The single and multi-step Dyna. The single-step
Dyna dreams only one step ahead and is able to predict
only one step into the future, while the multi-step Dyna
dreams many steps ahead and is able to predict many steps
into the future.

4. The Linear Multi-step Model

In the lookup table representation, the k-step model
of the world is given by (Sutton, 1995)

P (k) = (γ(Pπ)′)k, R(k) =
k−1∑
j=0

(γPπ)jRπ, k = 1, 2, . . .

The k-step model predicts k steps into the future:
P (k)φt is the representation of the expected states, k
steps in the future and (R(k))′φt is the expected reward
in k steps. Notice that

V π = R(k) + (P (k))′V π, ∀k = 1, 2, . . . , (2)

which is a generalization of the original Bellman equa-
tion V π = Rπ + γPπV π.

4.1. The Optimality of the One-step Linear
Model

We show that (Fπ)′ and fπ constitute the best one-
step linear model inRn×n. If the state space is large, it
is not practical to maintain the one step model Pπ. In-
stead we maintain a smaller matrix X ∈ Rn×n, which
is a compressed transition matrix in the feature space.
For a vector θ ∈ Rn, Xθ is its approximated one-step
expectation in Rn, while ΦX is an approximation of
the one-step transition matrix, Pπ.

Given θ and Φ, there are two ways to get the one-
step result in the original state space RN . The first
way is to obtain the one-step result in the feature space
θ ∈ Rn by applying X, which gives Xθ. Then map Xθ

back to the state space RN to obtain ΦXθ. Another
way is to first map θ back to the state space RN and
get Φθ. Then apply the true model Pπ, and get the
one-step result, PπΦθ. If we want a good X, the error
between the two results can be used as a criterion.
The following theorem shows that minimizing the error
between ΦXθ and PπΦθ gives the optimal solution,
X∗ = (Fπ)′.

Theorem 1. For ∀θ ∈ Rn, the vector (Fπ)′θ is the
best one-step result of θ in Rn, in the sense that
Φ((Fπ)′θ) has the minimum error of approximating
the one-step result of any vector Φθ ∈ RN , i.e.,

(Fπ)′ = arg min
X∈Rn×n

||(ΦX)θ − PπΦθ||2Dπ ,

where || · ||Dπ is the Dπ-norm, defined by ||Φθ||Dπ =√
(Φθ)′DπΦθ.

Similarly, we have

Theorem 2. The one-step reward model Φfπ gives
the best fit of Rπ, in the sense that

fπ = arg min
f∈Rn

||Rπ − Φf ||2Dπ .

4.2. The Iterated Multi-step Model

Since (Fπ)′ and fπ constitute the best one-step linear
model in Rn×n, we can iterate them k times to obtain
a k-step model, that we call the iterated multi-step
model:

F (k) = (γFπ)k, f (k) =
k−1∑
j=0

(γ(Fπ)′)jfπ.

We extend (2) to a general k-step Bellman equation
with linear function approximation:

V̂ π = Φθ = Φf (k) + Φ(F (k))′θ, ∀k = 1, 2, (3)

4.3. The λ-model

Estimating the iterated k-step model F (k) and f (k)

on line is intractable for finite k > 1. One can first
estimate Fπ and fπ, and then compute F (k) and f (k)

through powers of Fπ. However, the matrix product is
too complex in computation. Thus instead of estimat-
ing the model directly we develop an approximation of
it.

First let us see how to use the model. Given an imag-
inary feature φ̃τ , we look k steps ahead by applying
the iterated k-step transition model:

φ̃(k)
τ = F (k)φ̃τ .

A Multi-Step Dyna Planning

As k grows, F (k) diminishes quickly and thus φ̃(k)
τ goes

to 0 quickly. 1 This means the more steps we look into
the future, the more ambiguous is our feature (state).
It suggests we can use the following approximated k-
step model:

F (k) ≈ (λγ)k−1γFπ,

where λ ∈ (0, 1]. To guarantee that the optimality (3)
still holds, we approximate the iterated k-step reward
model by

f (k) ≈ (I − (λγ)k−1γ(Fπ)′)(I − γ(Fπ)′)−1fπ,

When k = 1, we get back the single-step model used
by existing linear Dyna; however, as k → ∞, we get
an infinite-step model. The intermediate k interpolates
between the single-step model and infinite-step model.
We call this the λ-model. In the infinite-step model,
the transition model (λγ)k−1γFπ diminishes, which is
consistent with the fact that the iterated transition
matrix in k-step transition model also diminishes as
k grows. Thus the infinite-step model reduces to a
vector, f (∞).

For finite k, estimating F (k) has the same complexity
with estimating the single-step transition model. For
f (k), we have

f (k) ≈ (I − (λγ)k−1γ(Fπ)′)(I − γ(Fπ)′)−1fπ,

= f (∞) − (λγ)k−1γ(Fπ)′f (∞), (4)

where we define

f (∞) = (I − γ(Fπ)′)−1fπ.

The case of k = 1 is interesting. Previous (linear)
Dyna algorithm (Sutton et al., 2008) takes advantage
of the fact that f (1) = fπ and uses gradient descent to
estimate it from (1). On the other hand, in our Dyna
algorithm, we use (4) and estimate all f (k) from the
estimate of f (∞), that is no longer a gradient estimate
for k = 1. To differentiate between the two versions of
the single-step Dyna, we call the linear Dyna in (Sut-
ton et al., 2008) the gradient descent single-step Dyna,
and denote the single-step Dyna in our framework sim-
ply as Dyna(1).

5. Planning using the λ-model

In this section, we present the family of planning al-
gorithms, Dyna(k), that use the λ-model. We first de-
velop a planning algorithm for the infinite-step model,
and based on it, we then present Dyna(k) planning for
any finite k.

1This is because γFπ has a spectral radius smaller than
one, cf. Lemma 9.2.2 of (Bertsekas et al., 2004).

5.1. Dyna(∞): Planning using the Infinite-step
Model

The infinite-step model is preferable in computation
because F (∞) diminishes and the model reduces to
f (∞). It turns out that f (∞) can be further simpli-
fied to allow an efficient online estimation.

f (∞) = (I − γ(Fπ)′)−1fπ

= (Φ′DπΦ− γΦ′DπPπΦ)−1 · Φ′DπΦfπ

= −(Aπ)−1bπ. (5)

A key problem in modeling the infinite-step model,
f (∞), is to estimate Aπ and bπ. One can accumulate
these quantities online like LSTD (Bradtke & Barto,
1996; Boyan, 1999). LSTD is data efficient for policy
evaluation. However, it is poor for control as all ex-
perience is weighted equally (Sutton et al., 2008). In
the literature, usually more weight is put on the re-
cent experience. Here we estimate Aπ by adopting the
Robbins-Monro procedure

Aπt+1 = Aπt + βt(φt(γφt+1 − φt)′ −Aπt). (6)

Here βt, t ≥ 0 is some positive step-size sequence.
When βt = 1/T is used, where T is the number
of state visits over all trajectories, Aπt+1 is equal to
the normalized LSTD matrix. The other interest-
ing extreme is when βt = 1, in which case we have
Aπt+1 = φt(γφt+1 − φt)′, which is a rank one matrix
used by TD(0). This suggests that step-size can con-
trol the amount of experience we can use. In partic-
ular, a step-size βt ∈ (1/T, 1) enables us not only to
use all the experience, but also to put larger weights
on more recent experiences. However, we do not have
to estimate Aπt+1 itself, but only (Aπt+1)−1, which can
be updated in O(n2) using the Sherman-Morrison for-
mula.

(Aπt+1)−1 =
1

1− βt

(
(Aπt)−1 − βt(Aπt)−1φtd

′
t(A

π
t)−1

1− βt + βtd′t(Aπt)−1φt

)
,

(7)
where dt = γφt+1−φt. Similarly vector bπt can also be
estimated by the recency update. Finally f (∞) can be
estimated by f (∞) = (Aπt+1)−1bπt+1, where the matrix
inversion is computed by (7).

As with traditional Dyna, we initially sample a fea-
ture φ̃ from some distribution µ. We then apply the
infinite-step model to get the expected future features
and all the possible future rewards:

φ̃∞ = F (∞)φ̃, r̃∞ = (f (∞))′φ̃.

Next, TD(0) is applied on this simulated (“imagi-
nary”) experience.

θ̃ := θ̃ + α(r̃∞ + θ̃′φ̃∞ − θ̃′φ̃)φ̃,

A Multi-Step Dyna Planning

Algorithm 1 Dyna(k) (k = 1, . . . ,∞) planning using
the λ-model for evaluating policy π.

Initialize Fπ0 , (Aπ0)−1, bπ0 and θ0
Select an initial state
for each time step do

Act at according to π and receive rt, φt+1

dt = γφt+1 − φt
θt+1 = θt + αt(rt + d′tθt)φt
bπt+1 = bπt + βt(φtrt − bπt)
Compute (Aπt+1)−1 according to (7)
f (∞) = −(Aπt+1)−1bπt+1

Fπt+1 = Fπt + αt(φt+1 − Fπt φt)φ′t,
F (k) = (λγ)k−1γFπt+1 /* F (∞) = 0 */
f (k) = f (∞) − (F (k))′f (∞)

Set θ̃0 = θt+1

for τ = 1 to p do
Sample φ̃τ ∼ µ(·)
φ̃(k) = F (k)φ̃τ /* φ̃(∞) = 0*/
r̃(k) = (f (k))′φ̃τ
θ̃τ+1 = θ̃τ + ατ (r̃(k)τ + θ̃′τ φ̃

(k)
τ − θ̃′τ φ̃τ)φ̃τ

end for
Set θt+1 = θ̃τ+1

end for

which simplifies into

θ̃ := θ̃ + α(r̃∞ − θ̃′φ̃)φ̃, (8)

because φ̃∞ = 0. The complexity of the infinite-
step planning is much lower than the single-step lin-
ear Dyna because only O(n) computation is required
every planning step here while the single-step linear
Dyna requires O(n2) computation in every planning
step.

5.2. Dyna(k): Planning using the λ-model

The k-step λ-model is efficient to estimate, and can be
directly derived from the single-step and infinite-step
models.

F (k) = (λγ)k−1γFπt+1,

and
f (k) = f (∞) − (F (k))′f (∞),

respectively, where the infinite-step model is estimated
by f (∞) = (Aπt+1)−1bπt+1. Given an imaginary feature
φ̃, we look k steps ahead to see the future features and
rewards:

φ̃(k) = F (k)φ̃, r̃(k) = (f (k))′φ̃.

Thus we obtain an imaginary k-step transition expe-
rience φ̃ → (φ̃(k), r̃(k)), on which we can apply an
extended form of TD(0):

θ̃τ+1 = θ̃τ + α(r̃(k) + θ̃′τ φ̃
(k) − θ̃′τ φ̃)φ̃

We call this algorithm the Dyna(k) planning algo-
rithm, which is shown as Algorithm 1. When k = 1,
we use a single-step linear Dyna, Dyna(1). Notice that
Dyna(1) uses f (∞) while the gradient descent single-
step Dyna uses fπ. When k → ∞, we obtain the
Dyna(∞) algorithm.

6. Boyan Chain Example

The problem we consider is exactly the same as in
(Boyan, 1999). The root mean square error (RMSE)
for the value function is used as a criterion. We call
Dyna(k) for multi-step Dyna that uses the λ-model
for all k = 1, 2, . . . ,∞. Next, we describe the various
parameters of the experiments.

The step-size for TD used was α = 0.1(1 +
100)/(traj# + 100), which was also the step-size of
TD in the learning step of Dyna. For Dyna(k), we
used βt = 1/(T + 1) for computing A−1

t and bt, and
and αT = 0.5(1 + 10)/(10 + T) for Fπ computation.
For the gradient descent single-step Dyna, Fπ and fπ

also used the same αT as above.

All the weights of all the algorithms, fπ for the gradi-
ent descent single-step Dyna, and bπ for Dyna(k) were
initialized to zero. The LSTD and Dyna(k) matrices
were perturbed during initialization. For the gradient
descent single-step Dyna, we do not need to perturb
the matrix because there is no matrix inversion pro-
cedure there. For LSTD, we initialized A0 = −0.1I
while for Dyna(k), A−1

0 = −10I; and for all Dyna,
Fπ = 0.

In the planning step, all Dyna algorithms sampled a
feature whose only nonzero component (1) is from a
uniformly random location. The following experiment
only presents the results of planning once, but we
found that Dyna is faster when planning more steps.

First we compared the performance of algorithms for
a large number of episodes in Figure 2, in which each
curve was averaged over 30 (identical) sets of trajecto-
ries. Dyna(k) used λ = 0.9 for 1 < k < ∞. All Dyna
algorithms used ατ = 0.1. All Dyna algorithms are
observed to be significantly faster than TD(0). Fur-
thermore, Dyna algorithms are able to catch up with
the accuracy of LSTD. The gradient descent single-
step Dyna is a little slower than Dyna(1). Multi-step
Dyna algorithms are much faster than the two single-
step Dyna algorithms.

Figure 3 shows the performance of Dyna with the plan-
ning step-size varied from 0.1 to 1.0. The results sug-
gest that Dyna with a larger planning step-size is much
faster than with smaller planning step-size. Across all

A Multi-Step Dyna Planning

100 101 102 103 104
10−2

10−1

100

101

102

Episode

R
M

SE

Gradient Descent Single−step Dyna

LSTD TD

 Dyna(1)

 Dyna(10)

Planning steps: 1

Planning step−size: !
"
=0.1

 Dyna(#)

Figure 2. RMSE of TD, the single-step Dyna’s, the multi-
step Dyna’s and LSTD on Boyan chain.

0.2 0.4 0.6 0.8 1
0.17

0.18

0.19

0.2

0.21

0.22

0.23

Planning Step−size (!
"
)

R
M

SE

Gradient Descent Single−step Dyna

Dyna(1)

Dyna(3)

Dyna(5)

Dyna(#)

Planning Steps: 1

$=0.9

Figure 3. RMSE of Dyna’s on Boyan chain for many α.

ατ , multi-step Dyna is generally significantly faster
than single-step Dyna. Figure 4 shows the perfor-
mance of Dyna with λ varied from 0.1 to 0.95. The
results show that smaller λs lead to better performance
of Dyna than larger ones. For smaller λ, the RMSE of
Dyna are quite close; for bigger λ, multi-step Dyna is
significantly faster than single-step Dyna. The curves
in Figure 3 and Figure 4 were all averaged over 100
(identical) sets of trajectories.

7. Future Work

We have shown that multi-step Dyna is more advanta-
geous than single-step Dyna for policy evaluation. In
addition, we have provided a convergence proof using
constant planning step-size that (however) we have not
presented here. As part of our future work, we shall

0.2 0.4 0.6 0.8 1
0.18

0.185

0.19

0.195

0.2
0.202

!

RM
SE

Planning step−size: "
#
=0.1

 Planning steps: 1

Dyna(3)

Dyna(5)

Dyna(10)

Figure 4. RMSE of Dyna’s on Boyan chain for many λ.

extend multi-step Dyna to control and compare the
same with the single-step Dyna control algorithm and
variants of LSTD.

References

Bertsekas, D. P., Borkar, V., & Nedic, A. (2004).
Improved temporal difference methods with linear
function approximation. Learning and Approximate
Dynamic Programming (pp. 231–255). IEEE Press.

Bertsekas, D. P., & Tsitsiklis, J. N. (1996). Neuro-
dynamic programming. Athena.

Boyan, J. A. (1999). Least-squares temporal difference
learning. ICML-16.

Bradtke, S., & Barto, A. G. (1996). Linear least-
squares algorithms for temporal difference learning.
Machine Learning, 22, 33–57.

Sutton, R. S. (1988). Learning to predict by the meth-
ods of temporal differences. Machine Learning, 3,
9–44.

Sutton, R. S. (1990). Integrated architectures for
learning, planning, and reacting based on approx-
imating dynamic programming. ICML-17.

Sutton, R. S. (1995). TD models: Modeling the world
at a mixture of time scales. ICML-12.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement
learning: An introduction. MIT Press.

Sutton, R. S., Szepesvari, C., Geramifard, A., & Bowl-
ing, M. (2008). Dyna-style planning with linear
function approximation and prioritized sweeping.
UAI-24.

