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Abstract— Adversary scenarios in driving, where the other
vehicles may make mistakes or have a competing or malicious
intent, have to be studied not only for our safety but also
for addressing the concerns from public in order to push the
technology forward. Classical planning solutions for adversary
driving do not exist so far, especially when the vehicles do
not communicate their intent. Given recent success in solving
hard problems in artificial intelligence (Al), it is worth studying
the potential of reinforcement learning for safety driving in
adversary settings. In most recent reinforcement learning appli-
cations, there is a deep neural networks that maps an input state
to an optimal policy over primitive actions. However, learning
a policy over primitive actions is very difficult and inefficient.
On the other hand, the knowledge already learned in classical
planning methods should be inherited and reused. In order
to take advantage of reinforcement learning good at exploring
the action space for safety and classical planning skill models
good at handling most driving scenarios, we propose to learn a
policy over an action space of primitive actions augmented with
classical planning methods. We show two advantages by doing
so. First, training this reinforcement learning agent is easier and
faster than training the primitive-action agent. Second, our new
agent outperforms the primitive-action reinforcement learning
agent, human testers as well as the classical planning methods
that our agent queries as skills.

I. INTRODUCTION

In this paper, our problem context is autonomous driving.
The question for us to explore in the long term is, can
computers equipped with intelligent algorithms achieve su-
perhuman level safe driving? The task of autonomous driving
is very similar to game playing in the sequential decision
making nature. Although driving is not a two-player game
leading to a final win or loss, accident outcomes can still
be treated as loss. In driving, an action to take at every
time step influences the resulting state which the agent
observes next, which is the key feature of many problems
where reinforcement learning has been successfully applied.
However, unlike games, driving poses a unique challenge for
reinforcement learning with the stringent safety requirement.
Although the degree of freedom is relative small for vehicles,
the fast moving self-motion, high-dimensional observation
space and highly dynamic on-road environments pose a great
challenge for artificial intelligence (AI).

Human drivers drive well in normal traffic. However,
human beings are not good at handling accidents because
a human driver rarely experiences accidents in one’s life
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Fig. 1: Successful moments of driving with our method:
merging (row 1), passing (row 2) and finding gaps (row 3).

regardless of the large amount of accident-free driving time.
In this regard, the highly imbalanced positive and negative
driving samples poses a great challenge for supervised learn-
ing approach for training self-driving cars. We believe that
the prospect of autonomous driving is using programs to
simulate billions of accidents in various driving scenarios.
With a large scale of accident simulation, reinforcement
learning, already proven to be highly competitive in large
and complex simulation environments, has the potential to
develop the ultimately safest driving softwares for human
beings.

This paper studies the problem of adversary driving where
vehicles do not communicate with each other about their
intent. We call a driving scenario adversary if the other
vehicles in the environment can make mistakes or have
a competing or malicious intent. Adversary driving are
rare events but they can happen on the roads from time
to time, posing a great challenge to existing state-of-art
autonomous driving softwares. Adversary driving has to
be studied, not only for our safety, but also to address
the safety concerns from the public in order to push the
technology forward. However, most of the state-of-art clas-
sical planning algorithms for autonomous driving do not
consider adversary driving, usually assuming all the agents
in the environment are cooperative. For example, the other
vehicles are assumed to be “self-preserving”, which actively
avoid collisions with other agents whenever possible, e.g.,



see (Pierson et al) [2018). Optimal Reciprocal Collision
Avoidance (ORCA) (Van Den Berg et al.l 2011) is a popular
navigation framework in crowd simulation and multi-agent
system for avoiding collision with other moving agents and
obstacles. The traffic that ORCA generates is cooperative,
by planning on each vehicle’s velocity to avoid collision
with others. Recently, (Abeysirigoonawardena et al., [2019)
pointed that there is practical demand to simulate adversary
driving scenarios in order to test the safety of autonomous
vehicles.

Our work is the first attempt to solve non-communicating
adversary driving. We use a reinforcement learning approach.
Driving has a clear temporal nature, the current action has
an effect on choosing the actions in the future. Reasoning
which action to apply by considering its long-term effects
is usually called a temporal credit assignment, which is
usually modeled as a reinforcement learning problem. In
most recent reinforcement learning applications, there is a
deep neural networks that maps an input state to an optimal
policy over primitive actions. However, learning a policy
over primitive actions is very difficult and inefficient. For
example, hundreds of millions of frames of interacting with
the environment are required in order to learn a good policy
even for a simple 2D game in Atari 2600. In a simulated
driving environment, deep reinforcement learning was found
to be much inferior to classical planning and supervised
learning, in both the performance and the amount of training
time (Dosovitskiy et al.| 2017).

On the other hand, autonomous driving field has already
practised a rich set of classical planning methods. It is worth
pointing out that the problem of classical planning is not
that their intended performance is bad. In fact, both research
and industrial applications have shown that classical planning
works great in the scenarios they are developed for. The
problem of classical planning methods is the existence of
logic holes and corner cases that were not considered at
the time of developing. As a result, updating, testing and
maintaining these software modules is the true darkness
of this method: huge intensive human engineering labor
is involved. However, the knowledge already learned in
classical planning methods should be inherited and reused.
Implemented classical planning softwares in the autonomous
driving industry have logic holes but they perform well in
the general scenarios that they are developed for, usually
accounting for perhaps a large percentage of everyday driv-
ing. How do we reuse these state-or-art planning softwares
and solving their logic holes automatically without human
engineering?

To summarize, in autonomous driving, the field has im-
plemented a rich set of classical planning methods but
they have logic holes that originate from either oversight
or mistakes in the process of software engineering. Deep
reinforcement learning that learns a policy over primitive
actions is slow to train but they can explore the action space
for the best action though large numbers of simulations.
To take advantage of both methods, we propose to learn a
policy over an augmented action space from both primitive

actions and classical planning methods. Classical planning
methods are treated as skills and reused. They can be called
with an input state and gives an action suggestion. Our
reinforcement learning agent will be able to select over the
action suggestions by classical planning methods as well as
the primitive actions. Our method is able to call classical
planning methods to apply the skills in normal conditions
for which they are developed, but is also able to pick the
best primitive action to avoid collision in scenarios where
classical planning cannot ensure safety. In this way, we
do not have to re-learn for the majority of scenarios in
driving where classical planning methods already can deal
with, saving lots of time for training the deep networks,
and focus on the rare but most challenging scenarios where
they are not designed for. The advantage of our method is
that we do not have to manually detect whether classical
planning fails or not, instead, failures of their actions are
propagated by reinforcement learning to earlier time steps
and remembered through neural networks in training to avoid
selecting classical planning on the similar failure cases in the
future.

Our work opens the door to a novel architecture solution
for autonomous driving: building a decision hierarchy of
skills using classical planning or learning-based methods,
and calling them as augmented actions by reinforcement
learning. To provide contextual background, we discuss clas-
sical planning, learning-based control, reinforcement learn-
ing, the end-to-end and the hierarchical decision making
structure in the remainder of this section.

A. Classical Planning and Learning-based Control

We categorize control methods into two classes. The first
is classical planning, where a control policy is derived from
a system model. Methods including proportional integral
derivative (PID) controllers , model-predictive controller
(MPC) and rapidly-exploring random tree (RRT) are exam-
ples of classical planning. The second class is learning-based
control, usually used in pair with a deep neural networks.
Learning-based control is sample based or data driven. Both
supervised learning and reinforcement learning are learning-
based methods. Supervised learning systems aim to replicate
the behavior of human experts. However, expert data is often
expensive, and may also impose a ceiling on the performance
of the systems. By contrast, reinforcement learning is trained
from explorative experience and is able to outperform human
capabilities. Note that though, supervised learning can be
useful in training certain skills of driving. For example, a
supervised learning procedure is applied to imitate speed
control by human drivers via regulating the parameters in
a linear relationship between speed and shock to the vehicle
on off-road terrains (Stavens et al., 2007).

The advantage of classical planning is that algorithms are
easy to program, and have good performances though often
with significant efforts in parameter tuning. For example,
ORCA (Van Den Berg et al., 2011) has many parameters and
difficult to tune. Classical planning methods usually require
significant domain knowledge, and they are often sensitive to



the uncertainties in the real-world environment (Long et al.,
2017). Learning-based control, on the other hand, enables
mobile robots to continuously improve their proficiency and
adapt to the statistics of real-world environments with the
data collected from human experts or simulated interactions.

B. Classical Planning and Reinforcement Learning

Classical planning methods have already been widely
adopted in autonomous driving. Recent interests in using
reinforcement learning also arise in this new application field.
We comment that this is not incidental. Specifically, there are
a few common fundamental principles in the core ideas of
classical planning and reinforcement learning.

First, temporal relationship between the actions selected at
successive time steps is considered in both fields. Optimizing
the cost over future time steps is the key idea commonly
shared between classical planning and reinforcement learning
algorithms. For example, in MPC, there is a cost function
defined over a time horizon for the next few actions. The cost
function is one special case of the (negative) reward function
in reinforcement learning. MPC relies a system model and
an optimization procedure to plan the next few optimal
actions. The collision avoidance algorithm using risk level
sets maps the cost of congestion to a weighed graph along
a planning horizon, and apply Djikstra’s Algorithm to find
the fastest route through traffic (Pierson et al., |2018). Many
collision avoidance planning algorithms evaluate the safety
of the future trajectories of the vehicle by predicting the
future motion of all traffic participants, e.g., see (Lawitzky
et all 2013). However, MPC, Djikstra’s Algorithm and
collision avoidance planning are not sampled based, while
reinforcement learning algorithms are sample-based.

Second, both fields tend to rely on decision hierarchies for
handling complex decision making. Arranging the software
in terms of high-level planning, including route planning and
behavior planning, and low-level control, including motion
planning and closed-loop feedback control became a stan-
dard for autonomous driving field (Urmson et al. 2007
Montemerlo et al., [2008; [Shalev-Shwartz et all 2016). In
reinforcement learning, low-level options and a high-level
policy over options are separately learned (Bacon et al.,
2016). In robotics, locomotion skills are learned at a fast
time scale while a meta policy of selecting skills is learned
at a slow time scale (Peng et al., [2017).

Third, sampling-based tree search methods exist in both
fields. For example, RRT is a motion planning algorithm
for finding a safe trajectory by unrolling a simulation of the
underlying system (Kuwata et al., |2008)). In reinforcement
learning, Monte-Carlo Tree Search (MCTS) runs multiple
simulation paths from a node to evaluate the goodness of
the node until the end of each game.

C. Autonomous Driving and Reinforcement Learning

The prospect of developing a superhuman level driving
agent using reinforcement learning is intriguing. Training
reinforcement learning-equipped vehicles on the road is
not practical, and so far the efforts have been mainly in

simulators. A truthful and easily configurable simulator
is crucial to develop reinforcement learning-based agents.
The literature has seen many recent efforts on this. For
example, CARLA is an open-source driving simulator that
is specifically designed to develop for training learning-
based agents (Dosovitskiy et al.l 2017), with a benchmark
comparison of both supervised learning and reinforcement
learning agents. DeepTraffic implements a reinforcement
learning agent for lane control in high-way driving, and
hosts a competition for fine tuning the parameters for their
implemented algorithm (Fridman et al.| 2018)). In this paper,
we also developed a high-way lane control simulator that can
be easily customized.

A small wheel-vehicle trained with reinforcement learning
navigate with collision avoidance in a pedestrian-rich envi-
ronment (Chen et al.l [2017). Long-term driving strategies
are generated by a hierarchical temporal abstraction graph
(Shalev-Shwartz et al., [2016). A robot RC car was trained to
navigate in an complex indoor environment using an efficient
method that predicts multiple steps on a computation graph
(Kahn et al., |2018)).

D. End-to-End and Hierarchical Decision Making

The end-to-end approach is the state-of-art architecture for
learning-based agents, with remarkable success in hard Al
games due to reinforcement learning (Mnih et al.| 2015a;
Silver et all [2017b) and well practised with supervised
learning for high-way steering control in autonomous driving
(Net-Scale Technologies| 2004; Pomerleaul |1989; |Bojarski
et all 2016). Such end-to-end systems usually use a deep
neural networks that takes in a raw, high-dimensional state
observation as input and predicts the best primitive action at
the moment. The end-to-end approach is flat, containing only
a single layer of decision hierarchy. On the other hand, there
is also evidence that most autonomous driving architectures
follow a hierarchical design in the decision making module
(Montemerlo et al., [2008; [Urmson et al., [2007).

Our insight is that hierarchical decision making structure
is more practical for autonomous driving. Imagine a safety
driver sitting at the back of the wheel in a self-driving
car. Monitoring an end-to-end steering system and reading
the numerical steering values in real time is not practical
for a fast intervention response. However, a hierarchically
designed steering system can tell the safety driver a keeping-
lane behavior is going to occur in the next two seconds. It is
easier to monitor such behaviors in real time, and is able to
interrupt timely in emergent situations. Not only for safety
drivers, system designers need to understand autonomous
behaviors in order to improve programs. Future passengers
will also be more comfortable if they can understand the
real-time behavior of the vehicle they are sitting in.

However, the current hierarchical design of the decision
making module in driving softwares is highly rule and heuris-
tic based, for example, the use of finite-state-machines for
behavior management (Montemerlo et al., 2008)), and heuris-
tic search algorithms for obstacle handling (Montemerlo
et al. 2008). Remarkably similarly, these algorithms have



also dominated in the early development of many Al fields,
yet they were finally outperformed in Chess (Lai, 2015;
Silver et al., 2017a), Checker (Samuel, |1959; [Chellapilla and
Fogell 2001; [Schaeffer et al., 2007), and Go (Silver, |2009),
by reinforcement learning agents which use value function to
evaluate states and training the value function using temporal
difference methods aiming to achieve the largest future
rewards (Sutton, [1984). The paradigm of playing games
against themselves and with zero human knowledge in the
form of rules or heuristics has helped reinforcement learning
agents achieving superhuman-level performance (Tesaurol
1995} |Silver et al., [2017b).

The remainder of this paper is organized as follows.
Section [II] contains the details about our method. In Section
we conduct experiments on lane changing in an adversary
setting where the other vehicles may not give the way.
Section [IV] discusses future work and concludes the paper.

II. OUR METHOD

We consider a Markov Decision Process (MDP) of a state
space S, an action space A, a reward “function” R : Sx A —
R, a transition kernel p : § x A x S — [0, 1], and a discount
ratio v € [0,1). In this paper we treat the reward “function”
R as a random variable to emphasize its stochasticity. Bandit
setting is a special case of the general RL setting, where we
usually only have one state.

We use 7 : S x A — [0, 1] to denote a stochastic policy.
We use Z™(s,a) to denote the random variable of the sum
of the discounted rewards in the future, following the policy
7 and starting from the state s and the action a. We have
Z™(s,a) = Y 720V R(St, Ay), where Sy = s, Ag = a and
Si+1 ~ p(+|St, Ar), Ay ~ w(-|St). The expectation of the
random variable Z7 (s, a) is

Q" (s,a) = Ex pr[27 (5, 0)]

which is usually called the state-action value function. In
general RL setting, we are usually interested in finding an
optimal policy 7*, such that Q™ (s,a) > Q™ (s,a) holds
for any (m,s,a). All the possible optimal policies share
the same optimal state-action value function QQ*, which is
the unique fixed point of the Bellman optimality operator
(Bellman| (2013))),

Q(Sva) = TQ(S’ a) = E[R(sva)] + ’YIES'NP[HE}XQ(Slva'/)]

Q-learning and DQN. Based on the Bellman optimality
operator, [Watkins and Dayan| (1992) proposed Q-learning to
learn the optimal state-action value function Q* for control.
At each time step, we update Q(s,a) as

Q(s,a) = Q(s,a) + a(r + ymaxQ(s',a’) — Q(s, a))

where « is a step size and (s,a,r,s’) is a transition.
There have been many work extending Q-learning to linear
function approximation (Sutton and Barto|(2018); |[Szepesvari
(2010)). Mnih et al.| (2015b) combined Q-learning with deep
neural network function approximators, resulting the Deep-
Q-Network (DQN). Assume the () function is parameterized
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Fig. 2: Learning curves for collision rate: our method vs.
the end-to-end reinforcement learning. With the augmented
planning method into the action space, our method learns
much faster for collision avoidance.

by a network 6, at each time step, DQN performs a stochastic
gradient descent to update # minimizing the loss

1
5(7‘t+1 +ymax Qo (se+1,a) — Qo(st, ar))?

where 0~ is target network (Mnih et al.| (2015b)), which is
a copy of 0 and is synchronized with 6 periodically, and
(8¢, at, 7441, St+1) 1s a transition sampled from a experience
replay buffer (Mnih et al.[| (2015b)), which is a first-in-first-
out queue storing previously experienced transitions.

Augmented action space with classical planning meth-
ods. The State-of-art implementation of reinforcement learn-
ing uses an action space over the primitive actions, and a
neural networks that maps an input state to a policy over
primitive actions. To take advantage of classical planning
methods, we treat them as action functions that can be
queried with a state input and gives an action suggestion.
Our method is an implementation of DQN with augmented
action space from both primitive actions and action query
functions by classical planning methods.

III. EXPERIMENT

Our task is to control an ego vehicle in a lane changing
task that moves itself to the rightmost lane without collision.
This scenario happens frequently when we drive close to
freeway exits in everyday life.

A. The Adversary Lane-change Simulator

The driving simulator consists of 4 lanes in a 2D space.
Each lane is subdivided into 3 corridors. There were 19
vehicles in total within a 200 meter range. All the vehicles
do not communicate with each other. Seven other vehicles
can change lane randomly with probability 0.01 at each time
step. When they change lane, there is no safety function
applied, which poses a great challenge to control the ego
vehicle safely. Faster vehicles than the ego vehicle disappear
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Fig. 3: Learning curves for the reward: our method vs.
the end-to-end reinforcement learning. Our method achieves
much larger rewards in the same amount of training time.

from the top of the window and then reappear at the bottom
at random lanes with a random speed ranging from 20
km/h to 80 km/h. In this way we ensure a diverse traffic
congestion. Vehicle types include car and motorcycle. A
car occupies three corridors and a motorcycle occupies one
corridor. We map the pixels of simulator into meters. A car
is represented as a (width = 2m, height = 4m) rectangle
and a motorcycle is a (0.6m, 1.5m) rectangle.

State Representation. We used occupancy grid as state
representation (Fridman et al) [2018). The grid columns
correspond to the current lane plus two lanes on each of
the left and right sides of the car. At each time step, the
simulator returns the observations of the positions, speeds,
distances of the other vehicles in ego-centric view. It also
returns collision and safety breaking events. (We set the
safety distance threshold to two meters from the front and
back of the ego vehicle.)

Along the y-direction, we take 50 meters in the front and
50 meters in the back of the ego car and discretize the zone
with one meter per cell resulting in a grid of shape (5, 100).
The value of a cell is the speed of the vehicle in the cell;
if no occupying vehicle in the cell, the cell value is zero.
We normalize the occupancy grid matrix by diving with the
speed limit.

Reward. Whenever the ego agent reaches the rightmost
lane, a positive reward of 10.0 is observed. For collisions,
a —10.0 negative reward is given. For each safety distance
breaking event, a negative reward of —1.0 is observed. If
the agent fails in reaching the rightmost lane within 8,000
simulation steps, a negative reward of —10.0 is given. A
constant reward —0.001 is given at the other time steps to
encourage reaching the goal quickly.

Reinforcement learning agents need to interact with the
simulator continuously through episodes. For each interac-
tion episode, we initialize the ego car at the leftmost lane.
An episode is terminated if reaching the rightmost lane
successfully or fails with a collision or safety breaking.

Classical Planning Methods. To the best of our knowledge,
there is no state-of-art classical planning methods that work
for this non-communicating adversary driving scenario. We
implemented three planning methods by assuming all the
other vehicles do not change lane.

Method P1: If there are sufficient gaps in the front of the
ego vehicle in the current lane and both the front and back
in the right lane, switch right; otherwise, follow the front
vehicle in the current lane with a PID controller for a target
speed. If there is no vehicle in the front and the right lane
is occupied, a target speed of the speed limit is applied.

Method P2: This method is more complex than Method
P1. It mimics advanced human driving by checking both the
gaps in the right lane and the speed of the closest cars in the
right lane, to ensure that none of the vehicles will run into
the breaking distance of the ego vehicle.

Method P3 is an implementation of the risk level sets
(Pierson et all 2018). For the correctness check of our
implementation, we tested it in a simplified scenario where
all the other vehicles do not change lane. We noted that our
implementation was able to ensure collision free driving as
claimed in their paper.

Note that Methods P2 and P3 are just for reader’s informa-
tion about how competitive they can be relative to Method
P1 in the adversary setting. They are not used as a serious
comparison to our method because they are developed for
non-adversary settings. In our method, Method P1 is used as
an action function to augment the action space. Without loss
of generality, our method can also work with other classical
planning methods added into the action space.

B. Algorithm Setup

Action Space. For the End to End (E2E) DQN agent,
the actions are ‘“accelerate”, “no action”, “decelerate” and
“switch right”. The “accelerate” action applies a constant
acceleration of 3m/s?. The “decelerate” action applies a
deceleration of 4m/s?. The “no action” applies no action
and the momentum of the car is kept. The “switch right”
action will start changing to the right lane lane with a fixed
linear speed. It requires a few simulator steps in order to
reach the right lane. For our method, the action space is
augmented with Method P1.

The E2E DQN agent’s neural network: The input layer has
the same size as the state occupancy grid. There are three
hidden layers, each of them having 128 neurons with the
“tanh” activation function. The last layer has 4 (the number
of actions) outputs, which is the Q values for the four actions
given the state. The learning rate is 10~%, the buffer size for
experience replay is 10°, the discount factor is 0.99, and the
target network update frequency is 100. An epsilon-greedy
strategy for exploration was used for action selection. With
probability €, a random action is selected. With probability
1—e¢, the greedy action, a* = arg max,c 4 Q(s, a) is selected
at a given state s. In each episode, the value of ¢ starts from
0.1 and diminishes linearly to a constant, 0.02.

Our method is also implemented with a DQN agent, which
has the same neural networks architecture as the E2E agent,



TABLE I: The adversary lane changing task: Performance of
our method, end-to-end reinforcement learning, human and
three planning methods.

Ours E2E human P1 P2 P3
collision 2.1% 6.0% | 16.0% || 14.2% | 11.6% | 9.9%
success 85.0% | 70.1% | 79.2% || 69.4% | 69.6% | 71.7%
avr. speed 54.7 57.6 48.0 55.2 54.1 58.0

except that the output layer has 5 outputs, which include the
Q values for the four same actions as the E2E agent plus the
Q value estimate for Method P1. The learning rate, buffer
size, and discount factor, target network update frequency
and exploration is completely the same as the E2E agent.

C. Results

Figure 2] shows the learning curves. For every 50 episodes,
we computed the collision rate. Thus the x-axis is the number
of training episodes divided by 50. The y-axis shows the
collision rate in the past 50 episodes. The curves show that
our method learns much faster than the E2E agent. With the
augmented planning method (Method P1) providing action
suggestion, we effectively reduce the amount of the time and
samples in order to learn a good collision avoidance policy.
Figure [3] shows that our method also learns larger rewards
in the same amount of training time.

We also tested the final performance after training finishes
in 10,000 episodes for both the E2E agent and our agent.
In addition, we also implemented a gaming system using
Logitech G29 consisting driving wheels, acceleration and
deceleration paddles, to collect human performance data as
shown in Figure ] Three human testers were recruited. Each
tester was trained for 30 minutes. Their best performance
over 30 trials was recorded. In each trial, 25 episodes were
attempted. Finally, their performances were averaged to get
the human performance index.

Table [[] shows the performance of our method compared to
the E2E agent and human. Our method performs better than
both the E2E agent and human, achieving a low collision rate
of 2.1%. This low rate was achieved with a similar average
speed to E2E and human. In terms of the rate of success-
fully reaching the rightmost lane within the limited time,
our algorithm achieves 85.0%, which is much higher than
E2E (70.1%) and human (79.2%). It seems human testers
tend to drive at slow speeds to reach a good success rate.
Because collision is unavoidable in this adversary setting,
the performance of our method is very impressive. Note that
in the end of training shown in Figure 2] the collision rate
of our method was around 4% instead of being closing to
our testing performance, 2.1%. This is due to that in the
end of training, there is still a random action selection with
probability of 0.02 used in epsilon-greedy exploration.

The table also shows the collision rate of Method P1
is 14.2% on this adversary setting. This poor performance
is understandable because Method P1 was developed in a
much simpler, non-adversary setting. The interesting find-
ing here is that by calling Method P1 in our method as

Fig. 4: The system (rotated 90 degrees) used for collecting
driving performance data from human testers: A logitech
driving wheel, acceleration and braking paddles, and a chair.

augmented action, we learn to avoid collision faster as well
as improve the collision rate of Method P1 significantly by
using reinforcement learning for action exploration. Thus our
method achieves the goal of reusing classical planning as
skills to speed up learning. The other planning methods P2
and P3, although perform better than P1, still cannot solve
the adversary task with a satisfactory performance.

Figure [I] shows the successful moments of driving with
our agent. The first row shows a sequence of actions applied
by our agent that successfully merge in between two vehicles
on the right. Specifically, the first moment accelerates; the
second moment cuts in front of the vehicle on the right; and
the third and forth moments merge in between two other
vehicles on the right.

The second row shows our agent speeds up and success-
fully passes other vehicles on the right.

The third row, helped with annotations of the surrounding
vehicles. In the first moment, our vehicle is looking for a
gap. The second moment, v3 switches left, creating a gap
and the ego car switches right into the gap. In the following
moments, the ego car keeps switching right because there
are gaps on the right.

D. Knowledge Learned for Driving

The advantage of using reinforcement learning for au-
tonomous driving is that we can learn evaluation function
for actions at any state. With classical planning, knowledge
represented is not clear unless reading the code.

Figure[5|shows a few sampled moments. The values for the
Q values (outputs from the DQN networks) are printed in the
caption. Take the first moment for example, the ego vehicle
was selecting the “accelerate” action because the action value
corresponding to the acceleration action is the largest (0.851).
So the acceleration action was chosen (according to the
argmax operation over the Q values).

Figure [6] shows the Q(s,a = switch_right) at a number
of successive moments. The left color plots shows the values
of switching right within the time window. It clearly shows
that the best moment of switching right is when the ego
car moves near to the middle line between the two vehicles
on the right. This finding means that our method has the
potential to be used to learn and illustrate fine-grained driving
knowledge that is conditioned on distances and speeds of
other vehicles.



Fig. 5: Sampled moments: Q
order of “accelerate”, switching
right”: the first moment (accelerating), the action values
are, [0.851,0.841,0.829, 0.844]; the second moment (decel-
erating), the action values are, [1.030,1.042,1.043,1.036];
the third moment (accelerating), the action values are,
[1.421,1.416,1.406,1.418] and the fourth moment (decel-

erating), the action values are, [1.316,1.324,1.334,1.319].

LLINT3

no action”, “deceleration”,

3.2
2,72

2.24
1.76
1.28
0.8

Fig. 6: The left color plot shows the values of switching
right within the time window: the middle moments have the
largest values for switching right; while at the two ends,
the values are small, indicating the switching right is not
favorable because collision will occur. The right color bar
is the color legend. The middle shows the trace of the car
in the time window that corresponds to the left color plot
(dotted line). It shows that the best moment to switch right
is near the middle line of the two vehicles on the right.

IV. CONCLUSION

In this paper, we studied an adversary driving scenario
which is challenging in that the other vehicles may change
lane to collide with our ego vehicle at a random time step.
We proposed a novel way of combining classical planning
methods with naturally defined primitive actions to form an
augmented action space for reinforcement learning agents.
The key finding in this paper is that this method learns
faster for collision avoidance and performs better than the
end-to-end reinforcement learning agent that uses primitive
actions. The comparison with human testers is exciting,
which shows our new method performs better than the
average performance of three testers. A future work of this
paper is to compare with human testers in a first-person
view.
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