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Introduction

Optimization problems arise naturally in many application fields. Whatever people do, at
some point they get a craving to organize things in a best possible way. This intention,
converted in a mathematical form, turns out to be an optimization problem of certain type.
Depending on the field of interest, it could be the optimal design problem, the optimal
control problem, the optimal location problem or even the optimal diet problem. However,
the next step, consisting in finding a solution to the mathematical model, is not so trivial.
At the first glance, everything looks very simple: Many commercial optimization packages
are easily available and any user can get a “solution” to his model just by clicking on an
icon at the screen of the personal computer. The question is, how much can we trust it?

One of the goals of this course is to show that, despite to their attraction, the proposed
“solutions” of general optimization problems very often can break down the expectations of
a naive user. The main fact, which should be known to any person dealing with optimization
models, is that, in general, the optimization problems are unsolvable. In our opinion, this
statement, which is usually missed in standard optimization courses, is very important for
understanding the entire optimization theory, its past and its future.1

In many practical applications the process of creating a model takes a lot of time and
efforts. Therefore, the researchers should have a clear understanding of the properties of the
model they are creating. At the stage of the modeling, many different tools can be used to
approximate the reality. And it is absolutely necessary to understand the consequences of
each possible choice. Very often we need to choose between a good model, which we cannot
solve,2, and a “bad” model, which can be solved for sure. What is better?

In fact, the computational practice provides us with a kind of answer on the above
question. The most widespread optimization models now are the linear programming models.
It is very unlikely that such models can describe very well our nonlinear world. Thus, the
only reason for their popularity can be that the modelists prefer to deal with solvable models.
Of course, very often the linear approximation is poor, but usually it is possible to interpret
the consequences of such choice and make the correction of the solution, when it will be
available. May be it is better than trying to solve a model without any guarantee to get an
answer.

Another goal of this course consists in discussing the numerical methods for solvable
nonlinear models, we mean the convex programs. The development of convex optimization

1Therefore we start our course with a simple proof of this statement.
2More precisely, which we can try to solve
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6 Introduction

theory in the last decade has been very rapid and exciting. Now it consists of several
competing branches, each of which has some strong and some weak points. We will discuss
in details their features, taking into account the historical aspect. More precisely, we will
try to understand the internal logic of the development for each field. At this moment the
main results of the development can be found only in special journals and monographs.
However, in our opinion, now this theory is completely ready to be explained to the final
users, industrial engineers, economists and students of different specializations. We hope that
this book will be interesting even for the experts in optimization theory since it contains
many results, which have been never published in English.

In this book we will try to convince the reader, that in order to apply the optimization
formulations successfully, it is necessary to be aware of some theory, which tells us what we
can and what we cannot do with optimization problems. The elements of this theory, clean
and simple, can be found almost in each lecture of the course. We will try to show that
optimization is an excellent example of a complete application theory, which is simple, easy
to learn and which can be very useful in practical applications.

In this course we discuss the most efficient modern optimization schemes and prove their
efficiency estimates. This course is self-contained; we prove all necessary results without
dragging in exotic facts from other fields. Nevertheless, the proofs and the reasoning should
not be a problem even for the second-year undergraduate students.3

The structure of the course is as follows. It consists of four relatively independent chap-
ters. Each chapter includes three sections, each of which approximately corresponds to a
two-hours lecture.

Chapter 1 is devoted to general optimization problems. In Section 1.1 we introduce
the terminology, the notions of the oracle and the black box, the complexity of the general
iterative schemes. We prove that the global optimization problems are unsolvable and dis-
cuss the main features of different fields of optimization theory. In Section 1.2 we discuss
two main local unconstrained minimization schemes: the gradient method and the Newton
method. We prove their local rate of convergence and discuss the possible troubles (diver-
gence, convergence to a saddle point). In Section 1.3 we compare the formal structure of
the gradient and the Newton method. This analysis leads to the idea of variable metric.
We describe quasi-Newton methods and the conjugate gradient schemes. We conclude this
section with the analysis of the sequential unconstrained minimization schemes.

In Chapter 2 we consider the smooth convex optimization methods. In Section 2.1 we
analyze the reason of our failures in the previous chapter and derive from that two good func-
tional classes, the smooth convex functions and the smooth strongly convex functions. We
prove the lower complexity bounds for corresponding unconstrained minimization problems.
We conclude this section with the analysis of the gradient scheme, which demonstrates that
this method is not optimal. The optimal schemes for smooth convex minimization problems
are discussed in Section 2.2. We start from the unconstrained minimization problem. After
that we introduce the convex sets and the notion of the gradient mapping for a minimization
problem over a simple convex set. We show that the gradient mapping can just replace gradi-

3This course was presented by the author to students in the form of transparencies. And the rule was to
place any proof at a single sheet. Thus, all of them are necessarily very short.



Introduction 7

ent in the optimal schemes. In Section 2.3 we discuss more complicated problems, which are
formed by several smooth convex functions, namely, the minimax problem and constrained
minimization problem. For both problems we introduce the notion of the gradient mapping
and present the optimal schemes.

In Chapter 3 we describe the nonsmooth convex optimization theory. Since we do not
assume that the reader has a background in convex analysis, we devote the whole Section
3.1 to a short exposition of this theory. The final goal of this section is to justify the rules for
computing the subgradients of convex function. And we are trying to reach this goal, starting
from the definition of nonsmooth convex function, in a fastest way. The only deviation from
the shortest path is Kuhn-Tucker theorem, which concludes the section. We start Section
3.2 from lower complexity bounds for nonsmooth optimization problems. After that we
present the general scheme for complexity analysis of the corresponding methods. We use
this scheme to prove the rate of convergence of the gradient method, the center-of-gravity
method and the ellipsoid method. We discuss also some other cutting plane schemes. Section
3.3 is devoted to the minimimization schemes, which use a piece-wise linear model of convex
function. We describe the Kelley method and show that its rate of convergence cam be very
low. After that we introduce the level method. We prove the efficiency estimates of this
method for unconstrained and constrained minimization problems.

Chapter 4 is devoted to convex minimization problems with explicit structure. In Sec-
tion 4.1 we discuss a certain contradiction in the black box concept, as applied to convex
optimization. We introduce the notion of mediator, a special reformulation of the initial
problem, for which we can point out a non-local oracle. We introduce the special class of
convex functions, the self-concordant functions, for which the second-order oracle is not local
and which can be easily minimized by the Newton method. We study the properties of these
function and prove the rate of convergence of the Newton method. In Section 4.2 we intro-
duce the self-concordant barriers, the subclass of self-concordant functions, which is suitable
for sequential unconstrained minimization schemes. We study the properties of such barriers
and prove the efficiency estimate of the path-following scheme. In Section 4.3 we consider
several examples of optimization problems, for which we can construct a self-concordant bar-
rier, and therefore they can be solved by a path-following scheme. We consider linear and
quadratic programming problem, semidefinite programming, problems with extremal ellip-
soids, separable programming, geometric programming and approximation in Lp-norms. We
conclude this chapter and the whole course by the comparative analysis of an interior-point
scheme and a nonsmooth optimization method as applied to a concrete problem instance.
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Chapter 1

Nonlinear Programming

1.1 The World of Nonlinear Optimization

(General formulation of the problem; Important examples; Black box and iterative meth-
ods; Analytical and arithmetical complexity; Uniform grid method; Lower complexity bounds;
Lower bounds for global optimization; Rules of the game.)

1.1.1 General formulation of the problem

Let us start by fixing the mathematical form of our main problem and the standard termi-
nology. Let x be an n-dimensional real vector: x = (x(1), . . . , x(n)) ∈ Rn, S be a subset of
Rn, and functions f0(x) . . . fm(x) are some real-valued function of x. In the entire book we
deal with some variants of the following minimization problem:

min f0(x),

s.t.: fj(x) & 0, j = 1 . . . m,

x ∈ S,

(1.1.1)

where & could be ≤, ≥ or =.
We call f0(x) the objective function, the vector function f(x) = (f1(x), . . . , fm(x)) is

called the functional constraint, the set S is called the basic feasible set, and the set

Q = {x ∈ S | fj(x) ≤ 0, j = 1 . . . m},

is called the feasible set of the problem (1.1.1).1

There is a natural classification of the types of minimization problems:

• Constrained problems: Q ⊂ Rn.

1That is just a convention to consider the minimization problems. Instead, we could consider a maxi-
mization problem with the objective function −f0(x).

9



10 CHAPTER 1. NONLINEAR PROGRAMMING

• Unconstrained problems: Q ≡ Rn.

• Smooth problems: all fj(x) are differentiable.

• Nonsmooth problems: there is a nondifferentiable component fk(x),

• Linearly constrained problems: all functional constraints are linear:

fj(x) =
n∑

i=1

a
(i)
j x(i) + bj ≡ 〈aj, x〉+ bj, j = 1 . . . m,

(here 〈·, ·〉 stands for the inner product in Rn), and S is a polyhedron.

If f0(x) is also linear then (1.1.1) is a linear programming problem. If f0(x) is quadratic
then (1.1.1) is a quadratic programming problem.

There is also a classification based on the properties of the feasible set.

• Problem (1.1.1) is called feasible if Q 6= ∅.
• Problem (1.1.1) is called strictly feasible if ∃x ∈ int Q such that fj(x) < 0 (or > 0) for

all inequality constraints and fj(x) = 0 for all equality constraints.

Finally, we distinguish different types of solutions to (1.1.1):

• x∗ is called the optimal global solution to (1.1.1) if f0(x
∗) ≤ f0(x) for all x ∈ Q (global

minimum). Then f0(x
∗) is called the (global) optimal value of the problem.

• x∗ is called a local solution to (1.1.1) if f0(x
∗) ≤ f0(x) for all x ∈ int Q̄ ⊂ Q (local

minimum).

Let us consider now several examples demonstrating the origin of the optimization prob-
lems.

Example 1.1.1 Let x(1) . . . x(n) be our design variables. Then we can fix some functional
characteristics of our decision: f0(x), . . . , fm(x). These could be the price of the project,
the amount of resources required, the reliability of the system, and go on. We fix the most
important characteristics, f0(x), as our objective. For all others we impose some bounds:
aj ≤ fj(x) ≤ bj. Thus, we come up with the problem:

min f0(x),

s.t.: aj ≤ fj(x) ≤ bj, j = 1 . . . m,

x ∈ S,

where S stands for the structural constraints, like non-negativity or boundedness of some
variables, etc. 2
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Example 1.1.2 Let our initial problem be as follows: Find x ∈ Rn such that

f1(x) = a1,
. . .

fm(x) = am.
(1.1.2)

Then we can consider the problem:

min
x

m∑

j=1

(fj(x)− aj)
2,

may be with some additional constraints on x. Note that the problem (1.1.2) is almost
universal. It covers ordinary differential equations, partial differential equations, problems,
arising in Game Theory, and many others. 2

Example 1.1.3 Sometimes our decision variable x(1) . . . x(n) must be integer. This can be
described by the constraint:

sin(πx(i)) = 0, i = 1 . . . n.

Thus, we also treat the integer programming problem:

min f0(x),

s.t.: aj ≤ fj(x) ≤ bj, j = 1 . . . m,

x ∈ S,

sin(πx(i)) = 0, i = 1 . . . n.

2

Looking at these examples, a reader can understand the enthusiasm, which can be easily
recognized in the papers of 1950 – 1960 written by the pioneers of nonlinear programming.
Thus, our first impression should be as follows:

Nonlinear Optimization is very important and promising application theory. It
covers almost all needs of operations research and much more.

However, just by looking at the same list, especially at Examples 1.1.2 and 1.1.3, a more
suspicious (or more experienced) reader could come to the following conjecture:

In general, optimization problems should be unsolvable.

Indeed, life is too complicated to believe in a universal tool for solving all problems at once.
However, conjectures are not so important in science; that is a question of personal taste

how much we can believe in them. The most important event in the optimization theory
in the middle of 70s was that this conjecture was proved in some strict sense. The proof is
so simple and remarkable, that we cannot avoid it in our course. But first of all, we should
introduce a special language, which is necessary to speak about such things.
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1.1.2 Performance of numerical methods

Let us imagine the following situation: We have a problem P , which we are going to solve.
We know that there are different numerical methods for doing so, and of course, we want
to find the scheme, which is the best for our P . However, it turns out that we are looking
for something, which does not exist. In fact, it does, but it is too silly. Just consider a
method for solving (1.1.1), which is doing nothing except reporting x∗ = 0. Of course, it
does not work on all problems except those with x∗ = 0. And for the latter problems its
“performance” is much better than that of all other schemes.

Thus, we cannot speak about the best method for a concrete problem P , but we can do
so for a class of problems F ⊃ P . Indeed, usually the numerical methods are developed to
solve many different problems with the similar characteristics. Therefore we can define the
performance of M on F as its performance on the worst problem from F .

Since we are going to speak about the performance of M on the whole class F , we should
assume that M does not have a complete information about a concrete problem P . It has
only the description of the problem class F . In order to recognize P (and solve it), the
method should be able to collect the specific information about P . To model this situation,
it is convenient to introduce the notion of oracle. An oracle O is just a unit, which answers
the successive questions of the method. The method M is trying to solve the problem P by
collecting and handling the data.

In general, each problem can be included in different problem classes. For each problem
we can also develop the different types of oracles. But if we fix F and O, then we fix a model
of our problem P . In this case, it is natural to define the performance of M on (F ,O) as
its performance on the worst Pw from F .2

Further, what is the performance of M on P? Let us start from the intuitive definition:

Performance of M on P is the total amount of computational effort, which is
required by method M to solve the problem P.

In this definition there are several things to be specified. First, what does it mean: to solve
the problem? In some fields it could mean to find the exact solution. However, in many
areas of numerical analysis that is impossible (and optimization is definitely such a case).
Therefore, for us to solve the problem should mean:

To find an approximate solution to M with an accuracy ε > 0.

For that we can apply an iterative process, which naturally describes any method M working
with the oracle.

General Iterative Scheme. (1.1.3)

Input: A starting point x0 and an accuracy ε > 0.
Initialization. Set k = 0, I−1 = ∅. Here k is the iteration counter and Ik is the information
set accumulated after k iterations.

2Note that this Pw can be bad only for M .
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Main Loop.
1. Call the oracle O at xk.
2. Update the information set: Ik = Ik−1

⋃
(xk,O(xk)).

3. Apply the rules of method M to Ik and form the new test point xk+1.
4. Check the stopping criterion. If yes then form an output x̄. Otherwise set k := k + 1

and go to 1.
End of the Loop.

Now we can specify the term computational effort in our definition of the performance.
In the scheme (1.1.3) we can easily find two main sources. The first is in Step 1, where we
call the oracle, and the second is in Step 3, where we form the next test point. Thus, we can
introduce two measures of the complexity of the problem P for the method M:

1. Analytical complexity: The number of calls of the oracle, which is required to
solve the problem P with the accuracy ε.
2. Arithmetical complexity: The total number of the arithmetic operations (in-
cluding the work of the oracle and the method), which is required to solve the
problem P with the accuracy ε.

Thus, the only thing which is not clear now, is the meaning of the words with the accuracy
ε > 0. Clearly, this meaning is very important for our definitions of the complexity. However,
it is too specific to speak about that here. We will make this meaning exact when we consider
concrete problem classes.

Comparing the notions of analytical and arithmetical complexity, we can see that the
second one is more realistic. However, for a concrete methodM, the arithmetical complexity
usually can be easily obtained from the analytical complexity. Therefore, in this course we
will speak mainly about some estimates of the analytical complexity of some problem classes.

There is one standard assumption on the oracle, which allows us to obtain most of the
results on the analytical complexity of optimization methods. This assumption is called the
black box concept and it looks as follows:

1. The only information available for the method is the answer of the oracle.
2. The oracle is local: A small variation of the problem far enough from the test
point x does not change the answer at x.

This concept is extremely popular in the numerical analysis. Of course, it looks like an
artificial wall between the method and the oracle created by ourselves. It seems natural to
allow the method to analyze the internal structure of the oracle. However, we will see that
for some problems with very complicated structure this analysis is almost useless. For more
simple problems it could help. That is the subject of the last chapter of the book.

To conclude this section, let us present the main types of the oracles used in optimization.
For all of them the input is a test point x ∈ Rn, but the output is different:

• Zero-order oracle: the value f(x).

• First-order oracle: the value f(x) and the gradient f ′(x).

• Second-order oracle: the value f(x), the gradient f ′(x) and the Hessian f ′′(x).
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1.1.3 Complexity bounds for global optimization

Let us try to apply the formal language, introduced in the previous section, to a concrete
problem. For that, let us consider the following problem:

min
x∈Bn

f(x). (1.1.4)

In our terminology, this is a constrained minimization problem without functional con-
straints. The basic feasible set of this problem is Bn, an n-dimensional box in Rn:

Bn = {x ∈ Rn | 0 ≤ xi ≤ 1, i = 1, . . . , n}.
In order to specify the problem class, let us make the following assumption:

The objective function f(x) is Lipschitz continuous on Bn:

∀x, y ∈ Bn : | f(x)− f(y) |≤ L ‖ x− y ‖
for some constant L (Lipschitz constant).

Here and in the sequel we use notation ‖ · ‖ for the Euclidean norm on Rn:

‖ x ‖= 〈x, x〉 =

√√√√
n∑

i=1

(xi)2.

Let us consider a trivial method for solving (1.1.4), which is called the uniform grid
method. This method G(p) has one integer input parameter p and its scheme is as follows.

Scheme of the method G(p). (1.1.5)

1. Form (p + 1)n points

x(i1,i2,...,in) =

(
i1
p

,
i2
p

, . . . ,
in
p

)
,

where
i1 = 0, . . . , p,
i2 = 0, . . . , p,

. . .
in = 0, . . . , p.

2. Among all points x(...) find the point x̄ with the minimal value of the objective function.
3. Return the pair (x̄, f(x̄)) as the result. 2

Thus, this method forms a uniform grid of the test points inside the box Bn, computes
the minimum value of the objective over this grid and returns this value as an approximate
solution to the problem (1.1.4). In our terminology, this is a zero-order iterative method
without any influence of the accumulated information on the sequence of test points. Let us
find its efficiency estimate.
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Theorem 1.1.1 Let f ∗ be the global optimal value of problem (1.1.4). Then

f(x̄)− f ∗ ≤ L

√
n

2p
.

Proof:
Let x∗ be the global minimum of our problem. Then there exists coordinates (i1, i2, . . . , in)
such that

x ≡ x(i1,i2,...,in) ≤ x∗ ≤ x(i1+1,i2+1,...,in+1) ≡ y

(here and in the sequel we write x ≤ y for x, y ∈ Rn if and only if xi ≤ yi, i = 1, . . . , n). Note
that yi − xi = 1/p, i = 1, . . . , n, and x∗i ∈ [xi, yi], i = 1, . . . , n, Denote x̂ = (x + y)/2.
Let us form a point x̃ as follows:

x̃i =





yi, if x∗i ≥ x̂i,

xi, otherwise.

It is clear that | x̃i − x∗i |≤ 1
2p

, i = 1, . . . , n. Therefore

‖ x̃− x∗ ‖2=
n∑

i=1

(x̃i − x∗i )
2 ≤ n

4p2
.

Since x̃ belongs to our grid, we conclude that

f(x̄)− f(x∗) ≤ f(x̃)− f(x∗) ≤ L ‖ x̃− x∗ ‖≤ L

√
n

2p
. 2

Note that now we still cannot say what is the complexity of this method on the problem
(1.1.4). The reason is that we did not define the quality of the approximate solution we are
looking for. Let us define our goal as follows:

Find x̄ ∈ Bn : f(x̄)− f ∗ ≤ ε. (1.1.6)

Then we immediately get the following result.

Corollary 1.1.1 The analytical complexity of the method G is as follows:

A(G) =

(
bL
√

n

2ε
c[+2

)n

,

(here bac is the integer part of a).

Proof:
Indeed, let us take p = bL

√
n

2ε
c+ 1. Then p ≥ L

√
n

2ε
, and therefore, in view of Theorem 1.1.1,

we have: f(x̄)− f ∗ ≤ L
√

n
2p
≤ ε. 2
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This result is more informative, but we still have some questions. First, it may be that
our proof is too rough and the real performance of G(p) is much better. Second, we cannot be
sure that this is a reasonable method for solving (1.1.4). There may be there some methods
with much higher performance.

In order to answer these questions, we need to derive the lower complexity bounds for the
problem (1.1.4), (1.1.6). The main features of these bounds are as follows.

• They are based on the Black Box concept.

• They can be derived for a specific class of problems F equipped by a local oracle O
and the termination rule.

• These bounds are valid for all reasonable iterative schemes. Thus, they provide us with
a lower bound for the analytical complexity on the problem class.

• Very often such bounds are based on the idea of the resisting oracle.

For us only the notion of the resisting oracle is new. Therefore, let us discuss it in detail.
A resisting oracle tries to create a worst problem for each concrete method. It starts from

an ”empty” function and it tries to answer each call of the method in the worst possible way.
However, the answers must be compatible with the previous answers and with the description
of the problem class. Note that after termination of the method it is possible to reconstruct
the problem, which fits completely the final information set of the method. Moreover, if we
launch this method on this problem, it will reproduce the same sequence of the test points
since it will have the same answers from the oracle.

Let us show how it works for the problem (1.1.4). Consider the class of problems F
defined as follows:
Problem formulation: min

x∈Bn

f(x).

Functional class: f(x) is Lipschitz continuous on Bn.
Approximate solution: Find x̄ ∈ Bn : f(x̄)− f ∗ ≤ ε.

Theorem 1.1.2 The analytical complexity of F for the 0-order methods is at least
( ]

L
2ε

[ )n
.

Proof:
Assume that there exists a method, which needs no more than N < pn, where p = b L

2ε
c

(≥ 1), calls of oracle to solve any problem of our class with accuracy ε > 0. Let us apply
this method to the following resisting oracle:

It reports that f(x) = 0 at any test point.
Therefore this method can find only x̄ ∈ Bn: f(x̄) = 0. However, note that there exists
x̂ ∈ Bn such that

x̂ +
1

p
e ∈ Bn, e = (1, . . . , 1) ∈ Rn,

and there were no test points inside the box B = {x | x̂ ≤ x ≤ x̂ + 1
p
e}. Denote x̃ = x̂ + 1

2p
e

and consider the function

f̄(x) = min{0, L ‖ x− x̃ ‖∞ −ε},



1.1. THE WORLD OF NONLINEAR OPTIMIZATION 17

where ‖ a ‖∞= max
1≤i≤n

| ai |. Clearly, the function f̄(x) is Lipschitz continuous with the

constant L (since ‖ a ‖∞≤‖ a ‖) and the optimal value of f̄(·) is −ε. Moreover, f̄(x) differs
from zero only inside the box B′ = {x |‖ x− x̃ ‖∞≤ ε

L
}. Since 2p ≤ L/ε, we conclude that

B′ ⊆ B ≡ {x | ‖ x− x̃ ‖∞≤ 1

2p
}.

Thus, f̄(x) is equal to zero at all test points of our method. Since the accuracy of the
result of our method is ε, we come to the following conclusion: If the number of calls of the
oracle is less than pn then the accuracy of the result cannot be less than ε. 2

Now we can say much more about the performance of the uniform grid method. Let us
compare its efficiency estimate with the lower bound:

G :

(
L

√
n

2ε

)n

, Lower bound:
(

L

2ε

)n

.

Thus, we conclude that G has optimal dependence of its complexity in ε and L, but not in
n. Note that our conclusion depends on the functional class. If we consider the functions f :

∀x, y ∈ Bn : | f(x)− f(y) |≤ L ‖ x− y ‖∞
then the same reasoning as before proves that the uniform grid method is optimal with the

efficiency estimate
(

L
2ε

)n
.

Theorem 1.1.2 supports our initial claim that the general optimization problems are
unsolvable. Let us look at the following example.

Example 1.1.4 Consider the problem class F defined by the following parameters:

L = 2, n = 10, ε = 0.01.

Note that the size of the problem is very small and we ask only for 1% accuracy.

The lower complexity bound for this class is
(

L
2ε

)n
. Let us compute what this means.

Lower bound: 1020 calls of oracle,
Complexity of the oracle: n arithmetic operations (a.o.),
Total complexity: 1021 a.o.,
Sun Station: 106 a.o. per second,
Total time: 1015 seconds,
1 year: less than 3.2 · 107 sec.

We need: 32 000 000 years.

This estimate is so disappointing that we cannot believe that such problems may become
solvable even in the future. Let us just play with the parameters of the class.
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• If we change from n for n + 1 then we have to multiply our estimate by 100. Thus, for
n = 11 our lower bound is valid for CRAY computer (108 a.o. per second).

• On the contrary, if we multiply ε by two, we reduce the complexity by a factor of 1000.
For example, if ε = 8% then we need only two weeks to solve our problem. 2

We should note, that the lower complexity bounds for problems with smooth functions,
or for high-order methods are not much better than those of Theorem 1.1.2. This can be
proved using the same arguments and we leave the proof as an exercise for the reader. An
advanced reader can compare our results with the upper bounds for NP-hard problems, which
are considered as a classical example of very difficult problems in combinatorial optimization.
It is 2n a.o. only!

To conclude this section, let us compare our situation with that in some other fields of
numerical analysis. It is well-known, that the uniform grid approach is a standard tool for
many of them. For example, let we need to compute numerically the value of the integral of
a univariate function:

I =

1∫

0

f(x)dx.

Then we have to form the discrete sum

Sn =
1

N

n∑

i=1

f(xi), xi =
i

N
, i = 1, . . . , N.

If f(x) is Lipschitz continuous then this value can be used as an approximation to I:

N = L/ε ⇒ | I − SN |≤ ε.

Note that in our terminology it is exactly the uniform grid approach. Moreover, it is a
standard way for approximating the integrals. The reason why it works here lies in the
dimension of the problem. For integration the standard sizes are 1 – 3, and in optimization
sometimes we need to solve problems with several million variables.

1.1.4 Identity cards of the fields

After the pessimistic result of the previous section, first of all we should understand what
could be our goal in the theoretical analysis of the optimization problems. Of course, ev-
erything is clear for global optimization. But may be its goals are too ambitious? May be
in some practical problems we would be satisfied by much less than an “optimal” solution?
Or, may be there are some interesting problem classes, which are not so terrible as the class
of general continuous functions?

In fact, each of these question can be answered in a different way. And this way defines the
style of the research (or rules of the game) in the different fields of nonlinear programming.
If we try to classify them, we will easily see that they differ one from another in the following
aspects:
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• Description of the goals.

• Description of the problem classes.

• Description of the oracle.

These aspects define in a natural way the list of desired properties of the optimization
methods. To conclude this lecture, let us present the “identity cards” of the fields we will
consider in our course.

Name: Global optimization. (Section 1.1)
Goals: Find a global minimum.
Functional class: Continuous functions.
Oracle: 0− 1− 2 order black box.
Desired properties: Convergence to a global minimum.
Features: From the theoretical viewpoint, this game is too short. We always
lose it.
Problem sizes: Sometimes people pretend to solve problems with several thou-
sands of variables. No guarantee for success even for very small problems.
History: Starts from 1955. Several local peaks of interest (simulated annealing,
neural networks, genetic algorithms).

Name: Nonlinear optimization. (Sections 1.2, 1.3.)
Goals: Find a local minimum.
Functional class: Differentiable functions.
Oracle: 1− 2 order black box.
Desired properties: Convergence to a local minimum. Fast convergence.
Features: Variability of approaches. Most widespread software. The goal is not
always acceptable and reachable.
Problem sizes: upto 1000 variables.
History: Starts from 1955. Peak period: 1965 – 1975. Theoretical activity now
is rather low.

Name: Convex optimization. (Chapters 2, 3.)
Goals: Find a global minimum.
Functional class: Convex sets and functions.
Oracle: 1st order black box.
Desired properties: Convergence to a global minimum. Rate of convergence
depends on the dimension.
Features: Very rich and interesting theory. Complete complexity theory. Effi-
cient practical methods. The problem class is sometimes restrictive.
Problem sizes: upto 1000 variables.
History: Starts from 1970. Peak period: 1975 – 1985. Theoretical activity now
is rather high.
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Name: Interior-point polynomial-time methods.(Chapter 4.)
Goals: Find a global minimum.
Functional class: Convex sets and functions with explicit structure.
Oracle: 2nd order oracle which is not a black box.
Desired properties: Fast convergence to a global minimum. Rate of conver-
gence depends on the structure of the problem.
Features: Very new and perspective theory. Avoid the black box concept. The
problem class is practically the same as in convex programming.
Problem sizes: Sometimes up to 10 000 000 variables.
History: Starts from 1984. Peak period: 1990 − . . .. Very high theoretical
activity just now.

1.2 Local methods in unconstrained minimization

(Relaxation and approximation; Necessary optimality conditions; Sufficient optimality con-
ditions; Class of differentiable functions; Class of twice differentiable functions; Gradient
method; Rate of convergence; Newton method.)

1.2.1 Relaxation and approximation

We have already mentioned in the previous section that the main goal of the general nonlinear
programming is to find a local solution to a problem defined by differentiable functions.
In general, the global structure of these problems is not much simpler than that of the
problems defined by Lipschitz continuous functions. Therefore, even for such restricted
goals, it is necessary to follow some special principles, which guarantee the convergence of
the minimization process.

The majority of the nonlinear programming methods are based on the idea of relaxation:

We call the sequence {ak}∞k=0 a relaxation sequence if ak+1 ≤ ak for all k ≥ 0.

In this section we consider several methods for solving the unconstrained minimization
problem

min
x∈Rn

f(x), (1.2.1)

where f(x) is a smooth function. To solve this problem, we can try to generate a relaxation
sequence {f(xk)}∞k=0:

f(xk+1) ≤ f(xk), k = 0, 1, . . . .

If we manage to do that, then we immediately have the following important consequences:

1. If f(x) is bounded below on Rn, then the sequence {f(xk)}∞k=0 converges.

2. In any case we improve the initial value of the objective function.

However, it would be impossible to implement the idea of relaxation without a direct use
of another fundamental principle of numerical analysis, namely approximation. In general,
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To approximate an object means to replace the initial complicated object by a
simplified one, close enough to the original.

In nonlinear optimization we usually apply local approximations based on the derivatives of
the nonlinear function. These are the first- and the second-order approximations (or, the
linear and quadratic approximations).

Let f(x) be differentiable at x̄. Then for y ∈ Rn we have:

f(y) = f(x̄) + 〈f ′(x̄), y − x̄〉+ o(‖ y − x̄ ‖),

where o(r) is some function of r ≥ 0 such that lim
r↓0

1
r
o(r) = 0 and o(0) = 0. The linear

function f(x̄) + 〈f ′(x̄), y − x̄〉 is called the linear approximation of f at x̄. Recall that the
vector f ′(x) is called the gradient of function f at x. Considering the points yi = x̄ + εei,
where ei is the ith coordinate vector in Rn, we obtain the following coordinate form of the
gradient:

f ′(x) =

(
∂f(x)

∂x1

, . . . ,
∂f(x)

∂xn

)T

.

Let us look at some important properties of the gradient. Denote by Lf (α) the sublevel
set of f(x):

Lf (α) = {x ∈ Rn | f(x) ≤ α}.
Consider the set of directions tangent to Lf (α) at x̄, f(x̄) = α:

Sf (x̄) = {s ∈ Rn | s = lim
yk→xk,f(yk)=α

yk − x̄

‖ yk − x̄ ‖}.

Lemma 1.2.1 If s ∈ Sf (x̄) then 〈f ′(x̄), s〉 = 0.

Proof:
Since f(yk) = f(x̄), we have:

f(yk) = f(x̄) + 〈f ′(x̄), yk − x̄〉+ o(‖ yk − x̄ ‖) = f(x̄).

Therefore 〈f ′(x̄), yk− x̄〉+o(‖ yk− x̄ ‖) = 0. Dividing this equation by ‖ yk− x̄ ‖ and taking
the limit in yk → x̄, we obtain the result. 2

Let s be a direction in Rn, ‖ s ‖= 1. Consider the local decrease of f(x) along s:

∆(s) = lim
α↓0

1

α
[f(x̄ + αs)− f(x̄)].

Note that f(x̄ + αs) − f(x̄) = α〈f ′(x̄), s〉 + o(α). Therefore ∆(s) = 〈f ′(x̄), s〉. Using the
Cauchy-Shwartz inequality:

− ‖ x ‖ · ‖ y ‖≤ 〈x, y〉 ≤‖ x ‖ · ‖ y ‖,
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we obtain: ∆(s) = 〈f ′(x̄), s〉 ≥ − ‖ f ′(x̄) ‖. Let us take s̄ = −f ′(x̄)/ ‖ f ′(x̄ ‖. Then

∆(s̄) = −〈f ′(x̄), f ′(x̄)〉/ ‖ f ′(x̄) ‖= − ‖ f ′(x̄) ‖ .

Thus, the direction −f ′(x̄) (the antigradient) is the direction of the fastest local decrease of
f(x) at the point x̄.

The next statement is probably the most fundamental fact in optimization.

Theorem 1.2.1 (First-order optimality condition; Fermà.)
Let x∗ be a local minimum of the differentiable function f(x). Then f ′(x∗) = 0.

Proof:
Since x∗ is a local minimum of f(x), then there exists r > 0 such that for all y ∈ Bn(x∗, r)
we have: f(y) ≥ f(x∗), where B2(x, r) = {y ∈ Rn | ‖ y − x ‖≤ r}. Since f is differentiable,
we conclude that

f(y) = f(x∗) + 〈f ′(x∗), y − x∗〉+ o(‖ y − x∗ ‖) ≥ f(x∗).

Thus, for all s, ‖ s ‖= 1, we have 〈f ′(x∗), s〉 = 0. However, this implies that

〈f ′(x∗), s〉 = 0, ∀s, ‖ s ‖= 1,

(consider the directions s and −s). Finally, choosing s = ei, i = 1 . . . n, where ei is the ith
coordinate vector in Rn, we obtain f ′(x∗) = 0. 2

Note that we have proved only a necessary condition of a local minimum. The points
satisfying this condition are called the stationary points of function f . In order to see that
such points are not always the local minima, it is enough to look at the univariate function
f(x) = x3 at x = 0.

Let us introduce now the second-order approximation. Let the function f(x) be twice
differentiable at x̄. Then

f(y) = f(x̄) + 〈f ′(x̄), y − x̄〉+ 1
2
〈f ′′(x̄)(y − x̄), y − x̄〉+ o(‖ y − x̄ ‖2).

The quadratic function f(x̄) + 〈f ′(x̄), y − x̄〉+ 1
2
〈f ′′(x̄)(y − x̄), y − x̄〉 is called the quadratic

(or second-order) approximation of function f at x̄. Recall that the (n × n)-matrix f ′′(x)
has the following entries:

(f ′′(x))i,j =
∂2f(x)

∂xi∂xj

.

It is called the Hessian of function f at x. Note that the Hessian is a symmetric matrix:

f ′′(x) = [f ′′(x)]T .

The Hessian can be seen as a derivative of the vector function f ′(x):

f ′(y) = f ′(x̄) + f ′′(x̄)(y − x̄) + o(‖ y − x̄ ‖),
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where o(r) is some vector function of r ≥ 0 such that lim
r↓0

1
r
‖ o(r) ‖= 0 and o(0) = 0.

Using the second–order approximation, we can write out the second–order optimality
conditions. In what follows notation A ≥ 0, used for a symmetric matrix A, means that
A is positive semidefinite; A > 0 means that A is positive definite (see Appendix 1 for
corresponding definitions).

Theorem 1.2.2 (Second-order optimality condition.)
Let x∗ be a local minimum of a twice differentiable function f(x). Then

f ′(x∗) = 0, f ′′(x∗) ≥ 0.

Proof:
Since x∗ is a local minimum of function f(x), there exists r > 0 such that for all y ∈ B2(x

∗, r)

f(y) ≥ f(x∗).

In view of Theorem 1.2.1, f ′(x∗) = 0. Therefore, for any y from B2(x
∗, r) we have:

f(y) = f(x∗) + 〈f ′′(x∗)(y − x∗), y − x∗〉+ o(‖ y − x∗ ‖2) ≥ f(x∗).

Thus, 〈f ′′(x∗)s, s〉 ≥ 0, for all s, ‖ s ‖= 1. 2

Again, the above theorem is a necessary (second–order) characteristics of a local mini-
mum. Let us prove a sufficient condition.

Theorem 1.2.3 Let function f(x) be twice differentiable on Rn and let x∗ satisfy the fol-
lowing conditions:

f ′(x∗) = 0, f ′′(x∗) > 0.

Then x∗ is a strict local minimum of f(x).

(Sometimes, instead of strict, we say the isolated local minimum.)
Proof:
Note that in a small neighborhood of the point x∗ the function f(x) can be represented as
follows:

f(y) = f(x∗) + 1
2
〈f ′′(x∗)(y − x∗), y − x∗〉+ o(‖ y − x∗ ‖2).

Since 1
r
o(r) → 0, there exists a value r̄ such that for all r ∈ [0, r̄] we have

| o(r) |≤ r

4
λ1(f

′′(x∗)),

where λ1(f
′′(x∗)) is the smallest eigenvalue of matrix f ′′(x∗). Recall, that in view of our

assumption, this eigenvalue is positive. Therefore, for any y ∈ Bn(x∗, r̄) we have:

f(y) ≥ f(x∗) + 1
2
λ1(f

′′(x∗)) ‖ y − x∗ ‖2 +o(‖ y − x∗ ‖2)

≥ f(x∗) + 1
4
λ1(f

′′(x∗)) ‖ y − x∗ ‖2> f(x∗).

2
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1.2.2 Classes of differentiable functions

It is well-known that any continuous function can be approximated by a smooth function
with an arbitrary small accuracy. Therefore, assuming differentiability only, we cannot derive
any reasonable properties of the minimization processes. For that we have to impose some
additional assumptions on the magnitude of the derivatives of the functional components of
our problem. Traditionally, in optimization such assumptions are presented in the form of a
Lipschitz condition for a derivative of certain order.

Let Q be a subset of Rn. We denote by Ck,p
L (Q) the class of functions with the following

properties:

• any f ∈ Ck,p
L (Q) is k times continuously differentiable on Q.

• Its pth derivative is Lipschitz continuous on Q with the constant L:

‖ f (p)(x)− f (p)(y) ‖≤ L ‖ x− y ‖

for all x, y ∈ Q.

Clearly, we always have p ≤ k. If q ≥ k then Cq,p
L (Q) ⊆ Ck,p

L (Q). For example, C2,1
L (Q) ⊆

C1,1
L (Q). Note also that these classes possess the following property:

If f1 ∈ Ck,p
L1

(Q), f2 ∈ Ck,p
L2

(Q) and α, β ∈ R1, then

αf1 + βf2 ∈ Ck,p
L3

(Q)

with L3 =| α | L1+ | β | L2.
We use notation f ∈ Ck(Q) for a function f which is k times continuously differentiable

on Q.
The most important class of the above type is C1,1

L (Q), the class of functions with Lip-
schitz continuous gradient. In view of the definition, the inclusion f ∈ C1,1

L (Rn) means
that

‖ f ′(x)− f ′(y) ‖≤ L ‖ x− y ‖ (1.2.2)

for all x, y ∈ Rn. Let us give a sufficient condition for that inclusion.

Lemma 1.2.2 Function f(x) belongs to C2,1
L (Rn) if and only if

‖ f ′′(x) ‖≤ L, ∀x ∈ Rn. (1.2.3)

Proof. Indeed, for any x, y ∈ Rn we have:

f ′(y) = f ′(x) +
1∫
0

f ′′(x + τ(y − x))(y − x)dτ

= f ′(x) +

(
1∫
0

f ′′(x + τ(y − x))dτ

)
· (y − x).
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Therefore, if condition (1.2.3) is satisfied then

‖ f ′(y)− f ′(x) ‖ =

∥∥∥∥∥

(
1∫
0

f ′′(x + τ(y − x))dτ

)
· (y − x)

∥∥∥∥∥

≤
∥∥∥∥∥

1∫
0

f ′′(x + τ(y − x))dτ

∥∥∥∥∥ · ‖ y − x ‖

≤
1∫
0
‖ f ′′(x + τ(y − x)) ‖ dτ · ‖ y − x ‖≤ L ‖ y − x ‖ .

On the other hand, if f ∈ C2,1
L (Rn), then for any s ∈ Rn and α > 0, we have:

∥∥∥∥∥∥




α∫

0

f ′′(x + τs)dτ


 · s

∥∥∥∥∥∥
=‖ f ′(x + αs)− f ′(x) ‖≤ αL ‖ s ‖ .

Dividing this inequality by α and taking the limit as α ↓ 0, we obtain (1.2.3). 2

This simple result provides us with many representatives of the class C1,1
L (Rn).

Example 1.2.1 1. Linear function f(x) = α + 〈a, x〉 belongs to C1,1
0 (Rn) since

f ′(x) = a, f ′′(x) = 0.

2. For the quadratic function f(x) = α + 〈a, x〉+ 1
2
〈Ax, x〉 with A = AT we have:

f ′(x) = a + Ax, f ′′(x) = A.

Therefore f(x) ∈ C1,1
L (Rn) with L =‖ A ‖.

3. Consider the function of one variable f(x) =
√

1 + x2, x ∈ R1. We have:

f ′(x) =
x√

1 + x2
, f ′′(x) =

1

(1 + x2)3/2
≤ 1.

Therefore f(x) ∈ C1,1
1 (R). 2

The next statement is important for the geometric interpretation of functions from the
class C1,1

L (Rn)

Lemma 1.2.3 Let f ∈ C1,1
L (Rn). Then for any x, y from Rn we have:

| f(y)− f(x)− 〈f ′(x), y − x〉 |≤ L

2
‖ y − x ‖2 . (1.2.4)
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Proof:
For all x, y ∈ Rn we have

f(y) = f(x) +
1∫
0
〈f ′(x + τ(y − x)), y − x〉dτ

= f(x) + 〈f ′(x), y − x〉+
1∫
0
〈f ′(x + τ(y − x))− f ′(x), y − x〉dτ.

Therefore

| f(y)− f(x)− 〈f ′(x), y − x〉 | =|
1∫
0
〈f ′(x + τ(y − x))− f ′(x), y − x〉dτ |

≤
1∫
0
| 〈f ′(x + τ(y − x))− f ′(x), y − x〉 | dτ

≤
1∫
0
‖ f ′(x + τ(y − x))− f ′(x) ‖ · ‖ y − x ‖ dτ

≤
1∫
0

τL ‖ y − x ‖2 dτ = L
2
‖ y − x ‖2 .

2

Geometrically, this means the following. Consider a function f from C1,1
L (Rn). Let us fix

some x0 ∈ Rn and form two quadratic functions

φ1(x) = f(x0) + 〈f ′(x0), x− x0〉+ L
2
‖ x− x0 ‖2,

φ2(x) = f(x0) + 〈f ′(x0), x− x0〉 − L
2
‖ x− x0 ‖2 .

Then, the graph of the function f is located between the graphs of φ1 and φ2:

φ1(x) ≥ f(x) ≥ φ2(x), ∀x ∈ Rn.

Let us prove the similar result for the class of twice differentiable functions. Our main
class of functions of that type will be C2,2

M (Rn), the class of twice differentiable functions
with Lipschitz continuous Hessian. Recall that for f ∈ C2,2

M (Rn) we have

‖ f ′′(x)− f ′′(y) ‖≤ M ‖ x− y ‖ (1.2.5)

for all x, y ∈ Rn.

Lemma 1.2.4 Let f ∈ C2,2
L (Rn). Then for any x, y from Rn we have:

‖ f ′(y)− f ′(x)− f ′′(x)(y − x) ‖≤ M

2
‖ y − x ‖2 . (1.2.6)
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Proof:

Let us fix some x, y ∈ Rn. Then

f ′(y) = f ′(x) +
1∫
0

f ′′(x + τ(y − x))(y − x)dτ

= f ′(x) + f ′′(x)(y − x) +
1∫
0
(f ′′(x + τ(y − x))− f ′′(x))(y − x)dτ.

Therefore

‖ f ′(y)− f ′(x)− f ′′(x)(y − x) ‖ =‖
1∫
0
(f ′′(x + τ(y − x))− f ′′(x))(y − x)dτ ‖

≤
1∫
0
‖ (f ′′(x + τ(y − x))− f ′′(x))(y − x) ‖ dτ

≤
1∫
0
‖ f ′′(x + τ(y − x))− f ′′(x) ‖ · ‖ y − x ‖ dτ

≤
1∫
0

τM ‖ y − x ‖2 dτ = M
2
‖ y − x ‖2 .

2

Corollary 1.2.1 Let f ∈ C2,2
M (Rn) and ‖ y − x ‖= r. Then

f ′′(x)−MrIn ≤ f ′′(y) ≤ f ′′(x) + MrIn,

where In is the unit matrix in Rn.

(Recall that for matrices A and B we write A ≥ B if A−B ≥ 0.)

Proof:

Denote G = f ′′(y)− f ′′(x). Since f ∈ C2,2
M (Rn), we have ‖ G ‖≤ Mr. This means that the

eigenvalues of the symmetric matrix G, λi(G), satisfy the following inequality:

| λi(G) |≤ Mr, i = 1, . . . , n.

Hence, −MrIn ≤ G ≡ f ′′(y)− f ′′(x) ≤ MrIn. 2
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1.2.3 Gradient method

Now we are completely prepared for the analysis of the unconstrained minimization methods.
Let us start from the simplest scheme. We already know that the antigradient is a direction
of the locally steepest descent of a differentiable function. Since we are going to find a local
minimum of such function, the following scheme is the first to be tried:

0). Choose x0 ∈ Rn.
1). Iterate

xk+1 = xk − hkf
′(xk), k = 0, 1, . . . .

(1.2.7)

This is a scheme of the gradient method. The gradient’s factor in this scheme, hk, is called
the step size. Of course, it is reasonable to choose the step size positive.

There are many variants of this method, which differ one from another by the step size
strategy. Let us consider the most important ones.

1. The sequence {hk}∞k=0 is chosen in advance, before the gradient method starts its job.
For example,

hk = h > 0, (constant step)

hk = h√
k+1

.

2. Full relaxation:
hk = arg min

h≥0
f(xk − hf ′(xk)).

3. Goldstein-Armijo rule: Find xk+1 = xk − hf ′(xk) such that

α〈f ′(xk), xk − xk+1〉 ≤ f(xk)− f(xk+1), (1.2.8)

β〈f ′(xk), xk − xk+1〉 ≥ f(xk)− f(xk+1), (1.2.9)

where 0 < α < β < 1 are some fixed parameters.

Comparing these strategies, we see that the first strategy is the simplest one. Indeed, it
is often used, but only in convex optimization, where the behavior of functions is much more
predictable than in the general nonlinear case.

The second strategy is completely theoretical. It is never used in practice since even in
one-dimensional case we cannot find an exact minimum of a function in finite time.

The third strategy is used in the majority of the practical algorithms. It has the following
geometric interpretation. Let us fix x ∈ Rn. Consider the function of one variable

φ(h) = f(x− hf ′(x)), h ≥ 0.

Then the step-size values acceptable for this strategy belong to the part of the graph of φ,
which is located between two linear functions:

φ1(h) = f(x)− αh ‖ f ′(x) ‖2, φ2(h) = f(x)− βh ‖ f ′(x) ‖2 .
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Note that φ(0) = φ1(0) = φ2(0) and φ′(0) < φ′2(0) < φ′1(0) < 0. Therefore, the acceptable
values exist unless φ(h) is not bounded below. There are several very fast one-dimensional
procedures for finding a point satisfying the conditions of this strategy, but their description
is not so important for us now.

Let us estimate now the performance of the gradient method. Consider the problem

min
x∈Rn

f(x),

with f ∈ C1,1
L (Rn). And let us assume that f(x) is bounded below on Rn.

Let us evaluate first the result of one step of the gradient method. Consider y = x−hf ′(x).
Then, in view of (1.2.4), we have:

f(y) ≤ f(x) + 〈f ′(x), y − x〉+ L
2
‖ y − x ‖2

= f(x)− h ‖ f ′(x) ‖2 +h2

2
L ‖ f ′(x) ‖2= f(x)− h(1− h

2
L) ‖ f ′(x) ‖2 .

(1.2.10)

Thus, in order to get the best estimate for the possible decrease of the objective function,
we have to solve the following one-dimensional problem:

∆(h) = −h

(
1− h

2
L

)
→ min

h
.

Computing the derivative of this function, we conclude that the optimal step size must satisfy
the equation ∆′(h) = hL− 1 = 0. Thus, it could be only h∗ = 1

L
, and that is a minimum of

∆(h) since ∆′′(h) = L > 0.
Thus, our considerations prove that one step of the gradient method can decrease the

objective function as follows:

f(y) ≤ f(x)− 1

2L
‖ f ′(x) ‖2 .

Let us check what is going on with our step-size strategies.
Let xk+1 = xk − hkf

′(xk). Then for the constant step strategy, hk = h, we have:

f(xk)− f(xk+1) ≥ h(1− 1
2
Lh) ‖ f ′(xk) ‖2 .

Therefore, if we choose hk = 2α
L

with α ∈ (0, 1), then

f(xk)− f(xk+1) ≥ 2

L
α(1− α) ‖ f ′(xk) ‖2 .

Of course, the optimal choice is hk = 1
L
.

For the full relaxation strategy we have

f(xk)− f(xk+1) ≥ 1

2L
‖ f ′(xk) ‖2
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since the maximal decrease cannot be less than that with hk = 1
L
.

Finally, for Goldstein-Armijo rule in view of (1.2.9) we have:

f(xk)− f(xk+1) ≤ β〈f ′(xk), xk − xk+1〉 = βhk ‖ f ′(xk) ‖2 .

From (1.2.10) we obtain:

f(xk)− f(xk+1) ≥ hk

(
1− hk

2
L

)
‖ f ′(xk) ‖2 .

Therefore hk ≥ 2
L
(1− β). Further, using (1.2.8) we have:

f(xk)− f(xk+1) ≥ α〈f ′(xk), xk − xk+1〉 = αhk ‖ f ′(xk) ‖2 .

Combining this inequality with the previous one, we conclude that

f(xk)− f(xk+1) ≥ 2

L
α(1− β) ‖ f ′(xk) ‖2 .

Thus, we have proved that in all cases we have

f(xk)− f(xk+1) ≥ ω

L
‖ f ′(xk) ‖2, (1.2.11)

where ω is some positive constant.
Now we are ready to estimate the performance of the gradient scheme. Let us sum the

inequalities (1.2.11) for k = 0, . . . , N . We obtain:

ω

L

N∑

k=0

‖ f ′(xk) ‖2≤ f(x0)− f(xN) ≤ f(x0)− f ∗, (1.2.12)

where f ∗ is the optimal value of the problem (1.2.1). As a simple conclusion of (1.2.12) we
have:

‖ f ′(xk) ‖→ 0 as k →∞.

However, we can say something about the convergence rate. Indeed, denote

g∗N = min
0≤k≤N

gk,

where gk =‖ f ′(xk) ‖. Then, in view of (1.2.12), we come to the following inequality:

g∗N ≤ 1√
N + 1

[
1

ω
L(f(x0)− f ∗)

]1/2

. (1.2.13)

The right hand side of this inequality describes the rate of convergence of the sequence {g∗N}
to zero. Note that we cannot say anything about the rate of convergence of the sequences
{f(xk)} or {xk}.

Recall, that in general nonlinear optimization our goal is rather moderate: We want
to find only a local minimum of our problem. Nevertheless, even this goal, in general, is
unreachable for the gradient method. Let us consider the following example.
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Example 1.2.2 Consider the function of two variables:

f(x) ≡ f(x(1), x(2)) =
1

2
(x(1))2 +

1

4
(x(2))4 − 1

2
(x(2))2.

The gradient of this function is f ′(x) = (x(1), (x(2))3− x(2))T . Therefore there are only three
points which can be a local minimum of this function:

x∗1 = (0, 0), x∗2 = (0,−1), x∗3 = (0, 1).

Computing the Hessian of this function,

f ′′(x) =

(
1 0
0 3(x(2))2 − 1

)
,

we conclude that x∗2 and x∗3 are the isolated local minima3, but x∗1 is only a stationary point
of our function. Indeed, f(x∗1) = 0 and f(x∗1 + εe2) = ε4

4
− ε2

2
< 0 for ε small enough.

Now, let us consider the trajectory of the gradient method, which starts from x0 = (1, 0).
Note that the second coordinate of this point is zero. Therefore, the second coordinate of
f ′(x0) is also zero. Consequently, the second coordinate of x1 is zero, etc. Thus, the entire
sequence of points, generated by the gradient method will have the second coordinate equal
to zero. This means that this sequence can converge to x∗1 only.

To conclude our example, note that this situation is typical for all first–order uncon-
strained minimization methods. Without additional very strict assumptions, it is impossible
for them to guarantee the global convergence of the minimizing sequence to a local minimum,
only to a stationary point. 2

Note that the inequality (1.2.13) describes a notion, which is new for us, that is the rate
of convergence of a minimization process. How we can use this notion in the complexity
analysis? Usually, the rate of convergence can be used to derive upper complexity estimates
for the problem classes. These are the estimates, which can be exhibited by some numerical
methods. If there exists a method, which exhibits the lower complexity bounds, we call this
method optimal for the problem class.

Let us look at the following example.

Example 1.2.3 Consider the following problem class:

Problem class: 1. Unconstrained minimization.

2. f ∈ C1,1
L (Rn).

3. f(x) is bounded below.

Oracle: First order black box.

ε− solution: f(x̄) ≤ f(x0), ‖ f ′(x̄) ‖≤ ε.

3In fact, in our example they are the global solutions.
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Note, that (1.2.13) can be used to obtain an upper bound for the number of steps (= calls of
the oracle), which is necessary to find a point with a small norm of the gradient. For that,
let us write out the following inequality:

g∗N ≤ 1√
N + 1

[
1

ω
L(f(x0)− f ∗)

]1/2

≤ ε.

Therefore, if N + 1 ≥ L
ωε2

(f(x0)− f ∗), we necessarily have g∗N ≤ ε.
Thus, we can use the value L

ωε2
(f(x0) − f ∗) as an upper complexity estimate for our

problem class. Comparing this estimate with the result of Theorem 1.1.2, we can see that it
is much better; at least it does not depend on n.

To conclude this example, note that lower complexity bounds for the class under consid-
eration are not known. 2

Let us check, what can be said about the local convergence of the gradient method.
Consider the unconstrained minimization problem

min
x∈Rn

f(x)

under the following assumptions:

1. f ∈ C2,2
M (Rn).

2. There exists a local minimum of function f at which the Hessian is positive definite.

3. We know some bounds 0 < l ≤ L < ∞ for the Hessian at x∗:

lIn ≤ f ′′(x∗) ≤ LIn. (1.2.14)

4. Our starting point x0 is close enough to x∗.

Consider the process: xk+1 = xk − hkf
′(xk). Note that f ′(x∗) = 0. Hence,

f ′(xk) = f ′(xk)− f ′(x∗) =

1∫

0

f ′′(x∗ + τ(xk − x∗))(xk − x∗)dτ = Gk(xk − x∗),

where Gk =
1∫
0

f ′′(x∗ + τ(xk − x∗))dτ . Therefore

xk+1 − x∗ = xk − x∗ − hkGk(xk − x∗) = (I − hkGk)(xk − x∗).

There is a standard technique for analyzing processes of this type, which is based on
contraction mappings. Let a sequence {ak} be defined as follows:

a0 ∈ Rn, ak+1 = Akak,
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where Ak are (n×n) matrices such that ‖ Ak ‖≤ 1−q with q ∈ (0, 1). Then we can estimate
the rate of convergence of the sequence {ak} to zero:

‖ ak+1 ‖≤ (1− q) ‖ ak ‖≤ (1− q)k+1 ‖ a0 ‖→ 0.

Thus, in our case we need to estimate ‖ In − hkGk ‖. Denote rk =‖ xk − x∗ ‖. In view
of Corollary 1.2.1, we have:

f ′′(x∗)− τMrkIn ≤ f ′′(x∗ + τ(xk − x∗)) ≤ f ′′(x∗) + τMrkIn.

Therefore, using our assumption (1.2.14), we obtain:

(l − rk

2
M)In ≤ Gk ≤ (L + rk

2
M)In.

Hence, (1− hk(L + rk

2
M))In ≤ In − hkGk ≤ (1− hk(l − rk

2
M))In and we conclude that

‖ In − hkGk ‖≤ max{ak(hk), bk(hk)}, (1.2.15)

where ak(h) = 1− h(l − rk

2
M) and bk(h) = h(L + rk

2
M)− 1.

Note that ak(0) = 1 and bk(0) = −1. Therefore, if rk < r̄ ≡ 2l
M

, then ak(h) is a strictly
decreasing function of h and we can ensure ‖ In − hkGk ‖< 1 for small enough hk. In this
case we will have rk+1 < rk.

As usual, many step-size strategies are possible. For example, we can choose hk = 1
L
. Let

us consider the “optimal” strategy consisting in minimizing the right hand side of (1.2.15):

max{ak(h), bk(h)} → min
h

.

Let us assume that r0 < r̄. Then, if we form the sequence {xk} using this strategy, we can be
sure that rk+1 < rk < r̄. Further, the optimal step size h∗k can be found from the equation:

ak(h) = bk(h) ⇔ 1− h(l − rk

2
M) = h(L +

rk

2
M)− 1.

Hence

h∗k =
2

L + l
. (1.2.16)

Under this choice we obtain:

rk+1 ≤ (L− l)rk

L + l
+

Mr2
k

L + l
.

Let us estimate the rate of convergence. Denote q = 2l
L+l

and ak = M
L+l

rk (< q). Then

ak+1 ≤ (1− q)ak + a2
k = ak(1 + (ak − q)) =

ak(1− (ak − q)2)

1− (ak − q)
≤ ak

1 + q − ak

.

Therefore 1
ak+1

≥ 1+q
ak
− 1, or

q

ak+1

− 1 ≥ q(1 + q)

ak

− q − 1 = (1 + q)
(

q

ak

− 1
)

.
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Hence,

q

ak

− 1 ≥ (1 + q)k
(

q

a0

− 1
)

= (1 + q)k

(
2l

L + l
· L + l

r0M
− 1

)
= (1 + q)k

(
r̄

r0

− 1
)

.

Thus,

ak ≤ qr0

r0 + (1 + q)k(r̄ − r0)
≤ qr0

r̄ − r0

(
1

1 + q

)k

.

This proves the following theorem.

Theorem 1.2.4 Let function f(x) satisfy our assumptions and let the starting point x0 be
close enough to a local minimum:

r0 =‖ x0 − x∗ ‖< r̄ =
2l

M
.

Then the gradient method with the optimal step size (1.2.16) converges with the following
rate:

‖ xk − x∗ ‖≤ r̄r0

r̄ − r0

(
1− l

L + l

)k

.

This rate of convergence is called linear.

1.2.4 Newton method

Initially, the Newton method was proposed for finding a root of a function of one variable
φ(t), t ∈ R1:

φ(t∗) = 0.

For that, it uses the idea of linear approximation. Indeed, assume that we have some t close
enough to t∗. Note that

φ(t + ∆t) = φ(t) + φ′(t)∆t + o(| ∆t |).
Therefore the equation φ(t + ∆t) = 0 can be approximated by the following linear equation:

φ(t) + φ′(t)∆t = 0.

We can expect that the solution of this equation, the displacement ∆t, is a good approxi-
mation to the optimal displacement ∆t∗ = t∗ − t. Converting this idea in the algorithmic
form, we obtain the following process:

tk+1 = tk − φ(tk)

φ′(tk)
.

This scheme can be naturally extended to the problem of finding solution to the system
of nonlinear equations:

F (x) = 0,
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where x ∈ Rn and F (x) : Rn → Rn. For that we have to define the displacement ∆x as a
solution to the following linear system:

F (x) + F ′(x)∆x = 0

(it is called the Newton system). The corresponding iterative scheme looks as follows:

xk+1 = xk − [F ′(xk)]
−1F (xk).

Finally, in view of Theorem 1.2.1, we can replace the unconstrained minimization problem
by the following nonlinear system

f ′(x) = 0. (1.2.17)

(This replacement is not completely equivalent, but it works in nondegenerate situations.)
Further, for solving (1.2.17) we can apply the standard Newton method for the system of
nonlinear equations. In the optimization case, the Newton system looks as follows:

f ′(x) + f ′′(x)∆x = 0,

Hence, the Newton method for optimization problems appears in the following form:

xk+1 = xk − [f ′′(xk)]
−1f ′(xk). (1.2.18)

Note that we can come to the process (1.2.18), using the idea of quadratic approximation.
Consider this approximation, computed at the point xk:

φ(x) = f(xk) + 〈f ′(xk), x− xk〉+ 1
2
〈f ′′(xk)(x− xk), x− xk〉.

Assume that f ′′(xk) > 0. Then we can choose xk+1 as a point of minimum of the quadratic
function φ(x). This means that

φ′(xk+1) = f ′(xk) + f ′′(xk)(xk+1 − xk) = 0,

and we come again to the Newton process (1.2.18).
We will see that the convergence of the Newton method in a neighborhood of a strict

local minimum is very fast. However, this method has two serious drawbacks. First, it can
break down if f ′′(xk) is degenerate. Second, the Newton process can diverge. Let us look at
the following example.

Example 1.2.4 Let us apply the Newton method for finding a root of the following function
of one variable:

φ(t) =
t√

1 + t2
.

Clearly, t∗ = 0. Note that

φ′(t) =
1

[1 + t2]3/2
.
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Therefore the Newton process looks as follows:

tk+1 = tk − φ(tk)

φ′(tk)
= tk − tk√

1 + t2k
· [1 + t2k]

3/2 = −t3k.

Thus, if | t0 |< 1, then this method converges and the convergence is extremely fast. The
point t0 = 1 is an oscillation point of this method. If | t0 |> 1, then the method diverges. 2

In order to escape from the possible divergence, in practice we can apply a damped Newton
method:

xk+1 = xk − hk[f
′′(xk)]

−1f ′(xk),

where hk > 0 is a step-size parameter. At the initial stage of the method we can use the
same step size strategies as for the gradient method. At the final stage it is reasonable to
chose hk = 1.

Let us study the local convergence of the Newton method. Consider the problem

min
x∈Rn

f(x)

under the following assumptions:

1. f ∈ C2,2
M (Rn).

2. There exists a local minimum of function f with positive definite Hessian:

f ′′(x∗) ≥ lIn, l > 0. (1.2.19)

3. Our starting point x0 is close enough to x∗.

Consider the process: xk+1 = xk − [f ′′(xk)]
−1f ′(xk). Then, using the same reasoning as

for the gradient method, we obtain the following representation:

xk+1 − x∗ = xk − x∗ − [f ′′(xk)]
−1f ′(xk)

= xk − x∗ − [f ′′(xk)]
−1

1∫
0

f ′′(x∗ + τ(xk − x∗))(xk − x∗)dτ

= [f ′′(xk)]
−1Gk(xk − x∗),

where Gk =
1∫
0
[f ′′(xk)− f ′′(x∗ + τ(xk − x∗))]dτ . Denote rk =‖ xk − x∗ ‖. Then

‖ Gk ‖ =‖
1∫
0
[f ′′(xk)− f ′′(x∗ + τ(xk − x∗))]dτ ‖

≤
1∫
0
‖ f ′′(xk)− f ′′(x∗ + τ(xk − x∗)) ‖ dτ

≤
1∫
0

M(1− τ)rkdτ = rk

2
M.
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In view of Corollary 1.2.1, and (1.2.19), we have:

f ′′(xk) ≥ f ′′(x∗)−MrkIn ≥ (l −Mrk)In.

Therefore, if rk < l
M

then f ′′(xk) is positive definite and ‖ [f ′′(xk)]
−1 ‖≤ (l−Mrk)

−1. Hence,
for rk small enough (rk < 2l

3M
), we have

rk+1 ≤ Mr2
k

2(l −Mrk)
(< rk).

The rate of convergence of this type is called quadratic.
Thus, we have proved the following theorem.

Theorem 1.2.5 Let function f(x) satisfy our assumptions. Suppose that the initial starting
point x0 is close enough to x∗:

‖ x0 − x∗ ‖< r̄ =
2l

3M
.

Then ‖ xk − x∗ ‖< r̄ for all k and the Newton method converges quadratically:

‖ xk+1 − x∗ ‖≤ M ‖ xk − x∗ ‖2

2(l −M ‖ xk − x∗ ‖) .

Comparing this result with the rate of convergence of the gradient method, we see that
the Newton method is much faster. Surprisingly enough, the region of quadratic convergence
of the Newton method is almost the same as the region of the linear convergence of the
gradient method. This means that the gradient method is worth to use only at the initial
stage of the minimization process in order to get close to a local minimum. The final job
should be performed by the Newton method.

In this section we have seen several examples of the convergence rate. Let us compare
these rates in terms of complexity. As we have seen in Example 1.2.3, the upper bound for
the analytical complexity of a problem class is an inverse function of the rate of convergence.

1. Sublinear rate. This rate is described in terms of a power function of the iteration
counter. For example, we can have rk ≤ c√

k
. In this case the complexity of this scheme

is c2/ε2.

Sublinear rate is rather slow. In terms of complexity, each new right digit of the answer
takes the amount of computations comparable with the total amount of the previous
work. Note also, that the constant c plays a significant role in the corresponding
complexity estimate.

2. Linear rate. This rate is given in terms of an exponential function of the iteration
counter. For example, it could be like that: rk ≤ c(1−q)k. Note that the corresponding
complexity bound is 1

q
(ln c + ln 1

ε
).

This rate is fast: Each new right digit of the answer takes a constant amount of
computations. Moreover, the dependence of the complexity estimate in constant c is
very weak.
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3. Quadratic rate. This rate has a form of the double exponential function of the iteration
counter. For example, it could be as follows: rk+1 ≤ cr2

k. The corresponding complexity
estimate depends double-logarithmically on the desired accuracy: ln ln 1

ε
.

This rate is extremely fast: Each iteration doubles the number of right digits in the
answer. The constant c is important only for the starting moment of the quadratic
convergence (crk < 1).

1.3 First-order methods in nonlinear optimization

(Gradient Method and Newton Method: What is different? Idea of variable metric; Variable
metric methods; Conjugate gradient methods; Constrained minimization: Penalty functions
and penalty function methods; Barrier functions and barrier function methods.)

1.3.1 Gradient method and Newton method: What is different?

In the previous section we have considered two local methods for finding a strict local mini-
mum of the following unconstrained minimization problem:

min
x∈Rn

f(x),

where f ∈ C2,2
L (Rn). These are the gradient method

xk+1 = xk − hkf
′(xk), hk > 0.

and the Newton Method:

xk+1 = xk − [f ′′(xk)]
−1f ′(xk).

Recall that the local rate of convergence of these methods is different. We have seen, that the
gradient method has a linear rate and the Newton method converges quadratically. What is
the reason for this difference?

If we look at the analytic form of these methods, we can see at least the following formal
difference: In the gradient method the search direction is the antigradient, while in the
Newton method we multiply the antigradient by some matrix, that is the inverse Hessian.
Let us try to derive these directions using some “universal” reasoning.

Let us fix some x̄ ∈ Rn. Consider the following approximation of the function f(x):

φ1(x) = f(x̄) + 〈f ′(x̄), x− x̄〉+
1

2h
‖ x− x̄ ‖2,

where the parameter h is positive. The first-order optimality condition provides us with the
following equation for x∗1, the unconstrained minimum of the function φ1(x):

φ′1(x
∗
1) = f ′(x̄) +

1

h
(x∗1 − x̄) = 0.
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Thus, x∗1 = x̄ − hf ′(x̄). That is exactly the iterate of the gradient method. Note, that if
h ∈ (0, 1

L
], then the function φ1(x) is the global upper approximation of f(x):

f(x) ≤ φ1(x), ∀x ∈ Rn,

(see Lemma 1.2.3). This fact is responsible for the global convergence of the gradient method.
Further, consider the quadratic approximation of the function f(x):

φ2(x) = f(x̄) + 〈f ′(x̄), x− x̄〉+
1

2
〈f ′′(x̄)(x− x̄), x− x̄〉.

We have already seen, that the minimum of this function is

x∗2 = x̄− [f ′′(x̄)]−1f ′(x̄),

and that is the iterate of the Newton method.
Thus, we can try to use some approximations of the function f(x), which are better than

φ1(x) and which are less expensive than φ2(x).
Let G be a positive definite n× n-matrix. Denote

φG(x) = f(x̄) + 〈f ′(x̄), x− x̄〉+
1

2
〈G(x− x̄), x− x̄〉.

Computing its minimum from the equation

φ′G(x∗G) = f ′(x̄) + G(x∗G − x̄) = 0,

we obtain
x∗G = x̄−G−1f ′(x̄). (1.3.1)

The first-order methods which form a sequence

{Gk} : Gk → f ′′(x∗)

(or {Hk} : Hk ≡ G−1
k → [f ′′(x∗)]−1) are called the variable metric methods. (Sometimes

the name quasi-Newton methods is used.) In these methods only the gradients are involved
in the process of generating the sequences {Gk} or {Hk}.

The reason explaining the step of the form (1.3.1) is so important for optimization, that
we provide it with one more interpretation.

We have already used the gradient and the Hessian of a nonlinear function f(x). However,
note that they are defined with respect to the standard Euclidean inner product on Rn:

〈x, y〉 =
n∑

i=1

x(i)y(i), x, y ∈ Rn, ‖ x ‖= 〈x, x〉1/2.

Indeed, the definition of the gradient is as follows:

f(x + h) = f(x) + 〈f ′(x), h〉+ o(‖ h ‖).
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From that equation we derive its coordinate form

f ′(x) =

(
∂f(x)

∂x1

, . . . ,
∂f(x)

∂xn

)
.

Let us introduce now a new inner product. Consider a symmetric positive definite n × n-
matrix A. For x, y ∈ Rn denote

〈x, y〉A = 〈Ax, y〉, ‖ x ‖A= 〈Ax, x〉1/2.

The function ‖ x ‖A is a new metric on Rn defined by the matrix A. Note that topologically
this new metric is equivalent to ‖ · ‖:

λ1(A)1/2 ‖ x ‖ ≤ ‖ x ‖A ≤ λn(A)1/2 ‖ x ‖,

where λ1(A) and λn(A) are the smallest and the largest eigenvalues of the matrix A. However,
the gradient and the Hessian, computed with respect to this metric, have another form:

f(x + h) = f(x) + 〈f ′(x), h〉+ 1
2
〈f ′′(x)h, h〉+ o(‖ h ‖)

= f(x) + 〈A−1f ′(x), h〉A + 1
2
〈A−1f ′′(x)h, h〉A + o(‖ h ‖A)

= f(x) + 〈A−1f ′(x), h〉A + 1
4
〈[A−1f ′′(x) + f ′′(x)A−1]h, h〉A + o(‖ h ‖A).

Hence, f ′A(x) = A−1f ′(x) is the new gradient and f ′′A(x) = 1
2
[A−1f ′′(x) + f ′′(x)A−1] is the

new Hessian (with respect to the metric defined by A).
Thus, the direction used in the Newton method can be interpreted as the gradient com-

puted with respect to the metric defined by A = f ′′(x). Note that the Hessian of f(x) at x
computed with respect to A = f ′′(x) is the unit matrix.

Example 1.3.1 Consider the quadratic function

f(x) = α + 〈a, x〉+ 1
2
〈Ax, x〉,

where A = AT > 0. Note that f ′(x) = Ax + a, f ′′(x) = A and f ′(x∗) = Ax∗ + a = 0 for
x∗ = −A−1a. Let us compute the Newton direction at some x ∈ Rn:

dN(x) = [f ′′(x)]−1f ′(x) = A−1(Ax + a) = x + A−1a.

Therefore for any x ∈ Rn we have: x − dN(x) = −A−1a = x∗. Thus, the Newton method
converges for a quadratic function in one step. Note also that

f(x) = α + 〈A−1a, x〉A + 1
2
‖ x ‖2

A,

f ′A(x) = A−1f ′(x) = dN(x), f ′′A(x) = A−1f ′′(x) = In. 2
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Let us write out the general scheme of the variable metric methods.

General scheme.

0. Choose x0 ∈ Rn. Set H0 = In. Compute f(x0) and f ′(x0).

1. kth iteration (k ≥ 0).

a). Set pk = Hkf
′(xk).

b). Find xk+1 = xk − hkpk (see Section 1.2.3 for the step-size rules).

c). Compute f(xk+1) and f ′(xk+1).

d). Update the matrix Hk : Hk → Hk+1. 2

The variable metric schemes differ one from another only in the implementation of Step
1d), which updates the matrix Hk. For that, they use the new information, accumulated at
Step 1c), namely the gradient f ′(xk+1). The idea of this update can be explained with a
quadratic function. Let

f(x) = α + 〈a, x〉+ 1
2
〈Ax, x〉, f ′(x) = Ax + a.

Then, for any x, y ∈ Rn we have f ′(x)− f ′(y) = A(x− y). This identity explains the origin
of the following quasi-Newton rule:

Choose Hk+1 such that Hk+1(f
′(xk+1)− f ′(xk)) = xk+1 − xk.

Naturally, there are many ways to satisfy this relation. Let us present several examples of
the variable metric schemes, which are recognized as the most efficient ones.

Example 1.3.2 Denote ∆Hk = Hk+1 − Hk, γk = f ′(xk+1) − f ′(xk) and δk = xk+1 − xk.
Then all of the following rules satisfy the Quasi-Newton relation:

1. Rank-one correction scheme.

∆Hk =
(δk −Hkγk)(δk −Hkγk)

T

〈δk −Hkγk, γk〉 .

2. Davidon-Fletcher-Powell scheme (DFP).

∆Hk =
δkδ

T
k

〈γk, δk〉 −
Hkγkγ

T
k Hk

〈Hkγk, γk〉 .

3. Broyden-Fletcher-Goldfarb-Shanno scheme (BFGS).

∆Hk =
Hkγkδ

T
k + δkγ

T
k Hk

〈Hkγk, γk〉 − βk
Hkγkγ

T
k Hk

〈Hkγk, γk〉 ,

where βk = 1 + 〈γk, δk〉/〈Hkγk, γk〉.
Clearly, there are many other possibilities. From the computational point of view, BFGS

is considered as the most stable scheme. 2
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Note that for quadratic functions the variable metric methods usually terminate in n iter-
ations. In the neighborhood of a strict minimum they have a superlinear rate of convergence:
for any x0 ∈ Rn there exists a number N such that for all k ≥ N we have

‖ xk+1 − x∗ ‖≤ const· ‖ xk − x∗ ‖ · ‖ xk−n − x∗ ‖

(the proofs are very long and technical). As far as global convergence is concerned, these
methods are not better than the gradient method (at least, from the theoretical point of
view).

Note that in these methods it is necessary to store and update a symmetric n × n-
matrix. Thus, each iteration needs O(n2) auxiliary arithmetic operations. During a long
time this feature was considered as the main drawback of the variable metric methods.
That stimulated the interest in so called conjugate gradient schemes, which have much lower
complexity of each iteration (we will consider these schemes in the next section). However, in
view of the tremendous growth of the computer power, these arguments are not so important
now.

1.3.2 Conjugate gradients

The conjugate gradient methods were initially proposed for minimizing a quadratic function.
Therefore we will describe first their schemes for the problem

min
x∈Rn

f(x),

with f(x) = α + 〈a, x〉+ 1
2
〈Ax, x〉 and A = AT > 0. We have already seen that the solution

of this problem is x∗ = −A−1a. Therefore, our quadratic objective function can be written
in the following form:

f(x) = α + 〈a, x〉+ 1
2
〈Ax, x〉 = α− 〈Ax∗, x〉+ 1

2
〈Ax, x〉

= α− 1
2
〈Ax∗, x∗〉+ 1

2
〈A(x− x∗), x− x∗〉.

Thus, f ∗ = α− 1
2
〈Ax∗, x∗〉 and f ′(x) = A(x− x∗).

Suppose we are given by a starting point x0. Consider the linear subspaces

Lk = Lin {A(x0 − x∗), . . . , Ak(x0 − x∗)},

where Ak is the kth power of the matrix A. The sequence of the conjugate gradient method
is defined as follows:

xk = arg min{f(x) | x ∈ x0 + Lk}, k = 1, 2, . . . . (1.3.2)

This definition looks rather abstract. However, we will see that this method can be written
in much more “algorithmic” form. The above representation is convenient for the theoretical
analysis.
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Lemma 1.3.1 For any k ≥ 1 we have Lk = Lin {f ′(x0), . . . , f
′(xk−1)}.

Proof:
For k = 1 we have f ′(x0) = A(x0 − x∗). Suppose that the statement of the lemma is true
for some k ≥ 1. Note that

xk = x0 +
k∑

i=1

λiA
i(x0 − x∗)

with some λi ∈ R1. Therefore

f ′(xk) = A(x0 − x∗) +
k∑

i=1

λiA
i+1(x0 − x∗) = y + λkA

k+1(x0 − x∗),

where y ∈ Lk. Thus,

Lk+1 = Lin {Lk, A
k+1(x0 − x∗)} = Lin {Lk, f

′(xk)} = Lin {f ′(x0), . . . , f
′(xk)}. 2

The next result is important for understanding the behavior of the minimization sequence
of the method.

Lemma 1.3.2 For any k, i ≥ 0, k 6= i we have 〈f ′(xk), f
′(xi)〉 = 0.

Proof:
Let k > i. Consider the function

φ(λ̄) = φ(λ1, . . . , λk) = f


x0 +

k∑

j=1

λjf
′(xj−1)


 .

In view of Lemma 1.3.1, there exists λ̄∗ such that xk = x0 +
k∑

j=1
λ∗jf

′(xj−1). However, in view

of its definition, xk is the point of minimum of f(x) on Lk. Therefore φ′(λ̄∗) = 0. It remains
to compute the components of the gradient:

0 =
∂φ(λ̄∗)

∂λi

= 〈f ′(xk), f
′(xi)〉. 2

Corollary 1.3.1 The sequence generated by the conjugate gradient method is finite. 2

(Since the number of the orthogonal directions cannot exceed n.)

Corollary 1.3.2 For any p ∈ Lk we have 〈f ′(xk), p〉 = 0. 2

The last result we need explains the name of the method. Denote δi = xi+1 − xi. It is
clear that Lk = Lin {δ0, . . . , δk−1}.
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Lemma 1.3.3 For any k 6= i we have 〈Aδk, δi〉 = 0.

(Such directions are called conjugate with respect to A.)
Proof:
Without loss of generality, we can assume that k > i. Then

〈Aδk, δi〉 = 〈A(xk+1 − xk), xi+1 − xi〉 = 〈f ′(xk+1)− f ′(xk), xi+1 − xi〉 = 0

since δi = xi+1 − xi ∈ Li+1 ⊆ Lk. 2

Let us show, how we can write out the conjugate gradient method in more algorithmic
form. Since Lk = Lin {δ0, . . . , δk−1}, we can represent xk+1 as follows:

xk+1 = xk − hkf
′(xk) +

k−1∑

j=0

λjδj.

In view of our notation, that is

δk = −hkf
′(xk) +

k−1∑

j=0

λjδj. (1.3.3)

Let us compute the coefficients of this representation. Multiplying (1.3.3) by A and δi,
0 ≤ i ≤ k − 1, and using Lemma 1.3.3 we obtain:

0 = 〈Aδk, δi〉 = −hk〈Af ′(xk), δi〉+
k−1∑
j=0

λj〈Aδj, δi〉

= −hk〈Af ′(xk), δi〉+ λi〈Aδi, δi〉

= −hk〈f ′(xk), f
′(xi+1)− f ′(xi)〉+ λi〈Aδi, δi〉.

Therefore, in view of Lemma 1.3.2, λi = 0 for all i < k − 1. For i = k − 1 we have:

λk−1 =
hk ‖ f ′(xk) ‖2

〈Aδk−1, δk−1〉 =
hk ‖ f ′(xk) ‖2

〈f ′(xk)− f ′(xk−1), δk−1〉 .

Thus, xk+1 = xk − hkpk, where

pk = f ′(xk)− ‖ f ′(xk) ‖2 δk−1

〈f ′(xk)− f ′(xk−1), δk−1〉 = f ′(xk)− ‖ f ′(xk) ‖2 pk−1

〈f ′(xk)− f ′(xk−1), pk−1〉
since δk−1 = −hk−1pk−1 by the definition of {pk}.

Note that we managed to write down the conjugate gradient scheme in terms of the
gradients of the objective function f(x). This provides us with possibility to apply formally
this scheme for minimizing a general nonlinear function. Of course, such extension destroys
all properties of the process, specific for the quadratic functions. However, we can hope that
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asymptotically this method could be very fast in the neighborhood of a strict local minimum,
where the objective function is close to being quadratic.

Let us present the general scheme of the conjugate gradient method for minimizing some
nonlinear function f(x).

Conjugate gradient method

0. Choose x0 ∈ Rn. Compute f(x0) and f ′(x0). Set p0 = f ′(x0).

1. kth iteration (k ≥ 0).

a). Find xk+1 = xk + hkpk (using an “exact” line search procedure).

b). Compute f(xk+1) and f ′(xk+1).

c). Compute the coefficient βk.

d). Set pk+1 = f ′(xk+1)− βkpk. 2

In the above scheme we did not specify yet the coefficient βk. In fact, there are many
different formulas for this coefficient. All of them give the same result for a quadratic
function, but in the general nonlinear case they generate different algorithmic schemes. Let
us present three of the most popular expressions.

1. βk = ‖f ′(xk+1)‖2
〈f ′(xk+1)−f ′(xk),pk〉 .

2. Fletcher-Rieves: βk = −‖f ′(xk+1)‖2
‖f ′(xk)‖2 .

3. Polak-Ribbiere: βk = − 〈f ′(xk+1),f
′(xk+1)−f ′(xk)〉

‖f ′(xk)‖2 .

Recall that in the quadratic case the conjugate gradient method terminates in n iterations
(or less). Algorithmically, this means that pn+1 = 0. In the nonlinear case that is not true,
but after n iteration this direction could loose any sense. Therefore, in all practical schemes
there is a restart strategy, which at some point sets βk = 0 (usually after every n iterations).
This ensures the global convergence of the scheme (since we have a normal gradient step
just after the restart and all other iterations decrease the function value), and a local n-step
local quadratic convergence:

‖ xn+1 − x∗ ‖≤ const· ‖ x0 − x∗ ‖2,

provided that x0 is close enough to the strict minimum x∗. Note, that this local convergence
is slower than that of the variable metric methods. However, the conjugate gradient schemes
have an advantage of the very cheap iteration. As far as the global convergence is concerned,
the conjugate gradients in general are not better than the gradient method.
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1.3.3 Constrained minimization

Let us briefly discuss the main ideas underlying the methods of general constrained mini-
mization. The problem we deal with is as follows:

f0(x) → min,

fi(x) ≤ 0, i = 1, . . . , m.
(1.3.4)

where fi(x) are smooth functions. For example, we can consider fi(x) from C1,1
L (Rn).

Since the components of the problem (1.3.4) are general nonlinear functions, we cannot
expect it would be easier to solve than the unconstrained minimization problem. Indeed,
even the troubles with stationary points, which we have in unconstrained minimization,
appear in (1.3.4) in much stronger form. Note that the stationary points of this problem
(what ever it is?) can be infeasible for the functional constraints and any minimization
scheme, attracted by such point, should admit that it fails to solve the problem.

Therefore, the following reasoning looks as a reasonable way to proceed:

1. We have several efficient methods for unconstrained minimization. (?)4

2. An unconstrained minimization problem is simpler than a constrained one. (?)5

3. Therefore, let us try to approximate the solution of the constrained problem (1.3.4) by
a sequence of solutions of some auxiliary unconstrained problems.

This ideology was implemented in the methods of Sequential Unconstrained Minimization.
There are two main groups of such method: the penalty function methods and the barrier
methods. Let us describe the basic ideas of this approach.

We start from penalty function methods.

Definition 1.3.1 A continuous function Φ(x) is called a penalty function for a closed set
Q if

• Φ(x) = 0 for any x ∈ Q,

• Φ(x) > 0 for any x /∈ Q.

(Sometimes the penalty function is called just penalty.)
The main property of the penalty functions is as follows: If Φ1(x) is a penalty function

for Q1 and Φ2(x) is a penalty function for Q2 then Φ1(x) + Φ2(x) is a penalty function for
the intersection Q1

⋂
Q2.

Let us give several examples of penalty functions.

4In fact, that is not absolutely true. We will see, that in order to apply the unconstrained minimization
method to solving the constrained problems, we need to be sure that we are able to find at least a strict
local minimum. And we have already seen (Example 1.2.2), that this could be a problem.

5We are not going to discuss the correctness of this statement for the general nonlinear problems. We
just want to prevent the reader from extending it onto the other problem classes. In the next chapters of
the book we will have a possibility to see that this statement is not always true.
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Example 1.3.3 Denote (a)+ = max{a, 0}. Let Q = {x ∈ Rn | fi(x) ≤ 0, i = 1, . . . , m}.
Then the following functions are penalties for the set Q:

1. Quadratic penalty: Φ(x) =
m∑

i=1
(fi(x))2

+.

2. Nonsmooth penalty: Φ(x) =
m∑

i=1
(fi(x))+.

The reader can easily continue this list. 2

The general scheme of the penalty function method is as follows

Penalty Function Method

0. Choose x0 ∈ Rn. Choose a sequence of penalty coefficients: 0 < tk < tk+1, tk →∞.

1. kth iteration (k ≥ 0).

Find a point xk+1 = arg min
x∈Rn

{f0(x) + tkΦ(x)} using xk as a starting point. 2

It is easy to prove the convergence of this scheme assuming that xk+1 is a global minimum
of the auxiliary function.6 Denote

Ψk(x) = f0(x) + tkΦ(x), Ψ∗
k = min

x∈Rn
Ψk(x)

(Ψ∗
k is the global optimal value of Ψk(x)). Let us make the following assumption.

Assumption 1.3.1 There exists t̄ > 0 such that the set S = {x ∈ Rn | f0(x)+ t̄Φ(x) ≤ f ∗}
is bounded.

Theorem 1.3.1 If the problem (1.3.4) satisfies Assumption 1.3.1 then

lim
k→∞

f(xk) = f ∗, lim
k→∞

Φ(xk) = 0.

Proof:
Note that Ψ∗

k ≤ Ψk(x
∗) = f ∗. Further, for any x ∈ Rn we have: Ψk+1(x) ≥ Ψk(x). Therefore

Ψ∗
k+1 ≥ Ψ∗

k. Thus, there exists a limit lim
k→∞

Ψ∗
k ≡ Ψ∗ ≤ f ∗. If tk > t̄ then

f0(xk) + t̄Φ(xk) ≤ f0(xk) + tkΦ(xk) ≤ f ∗.

Therefore, the sequence {xk} has limit points. For any such point x∗ we have Φ(x∗) = 0.
Therefore x∗ ∈ Q and

Ψ∗ = f0(x∗) + Φ(x∗) = f0(x∗) ≥ f ∗. 2

6If we assume that it is a strict local minimum, then the result is much weaker.
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Note that this result is very general, but not too informative. There are still many
questions, which should be answered. For example, we do not know what kind of penalty
function should we use. What should be the rules for choosing the penalty coefficients?
What should be the accuracy for solving the auxiliary problems? The main feature of this
questions is that they cannot be answered in the framework of the general NLP theory.
Therefore, traditionally, they are considered to be answered by the computational practice.

Let us consider now the barrier methods.

Definition 1.3.2 A continuous function F (x) is called a barrier function for a closed set Q
with nonempty interior if F (x) →∞ when x approaches the boundary of the set Q.

(Sometimes a barrier function is called barrier for short.)
Similarly to the penalty functions, the barriers possess the following property: If F1(x)

is a barrier for Q1 and F2(x) is a barrier for Q2 then F1(x) + F2(x) is a barrier for the
intersection Q1

⋂
Q2.

In order to apply the barrier approach, our problem must satisfy the Slater condition:

∃x̄ : fi(x̄) < 0, i = 1, . . . , m.

Let us look at some examples of the barriers.

Example 1.3.4 Let Q = {x ∈ Rn | fi(x) ≤ 0, i = 1, . . . ,m}. Then all of the following
functions are barriers for Q:

1. Power-function barrier: F (x) =
m∑

i=1

1
(−fi(x))p , p ≥ 1.

2. Logarithmic barrier: F (x) = − m∑
i=1

ln(−fi(x)).

3. Exponential barrier: F (x) =
m∑

i=1
exp

(
1

−fi(x)

)
.

The reader can continue this list. 2

The scheme of the barrier method is as follows.

Barrier Function Method

0. Choose x0 ∈ int Q. Choose a sequence of penalty coefficients: 0 < tk < tk+1, tk →∞.

1. kth iteration (k ≥ 0).

Find a point xk+1 = arg min
x∈Q

{f0(x) + 1
tk

F (x)} using xk as a starting point. 2
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Let us prove the convergence of this method assuming that xk+1 is a global minimum of
the auxiliary function. Denote

Ψk(x) = f0(x) +
1

tk
F (x), Ψ∗

k = min
x∈Q

Ψk(x),

(Ψ∗
k is the global optimal value of Ψk(x)).

Assumption 1.3.2 The barrier F (x) is below bounded: F (x) ≥ F ∗ for all x ∈ Q.

Theorem 1.3.2 Let the problem (1.3.4) satisfy Assumption 1.3.2. Then

lim
k→∞

Ψ∗
k = f ∗.

Proof:
Let x̄ ∈ int Q. Then lim

k→∞
Ψ∗

k ≤ lim
k→∞

[
f0(x̄) + 1

tk
F (x̄)

]
= f0(x̄). Therefore lim

k→∞
Ψ∗

k ≤ f ∗.

Further,

Ψ∗
k = min

x∈Q

{
f0(x) +

1

tk
F (x)

}
≥ min

x∈Q

{
f0(x) +

1

tk
F ∗

}
= f ∗ +

1

tk
F ∗.

Thus, lim
k→∞

Ψ∗
k = f ∗. 2

As with the penalty functions method, there are many questions to be answered. We
do not know how to find the starting point x0 and how to choose the best barrier function.
We do not know the rules for updating the penalty coefficients and the acceptable accuracy
of the solutions to the auxiliary problems. Finally, we have no idea about the efficiency
estimates of this process. And the reason is not in the lack of the theory. Our problem
(1.3.4) is just too complicated. We will see that all of the above questions get the exact
answers in the framework of convex programming.

We have finished our brief presentation of the general nonlinear optimization. It was really
very short and there are many interesting theoretical topics, which we did not mention. That
is because the main goal of this book is to describe the areas of optimization, in which we
can obtain some clear and complete results on the performance of the numerical methods.
Unfortunately, the general nonlinear optimization is just too complicated to fit the goal.
However, it was impossible to skip this field since a lot of basic ideas, underlying the convex
programming methods, take their origin in the general NLP. The gradient method and
the Newton method, the sequential unconstrained minimization and the barrier functions
were originally developed and used for these problems. But only the framework of convex
programming allows this ideas to find their real power. In the next chapters of this book we
will find many examples of the second birth of the old ideas.
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Chapter 2

Smooth Convex Programming

2.1 Minimization of Smooth Functions

(Smooth convex functions; Lower complexity bounds; Strongly convex functions; Lower com-
plexity bounds; Gradient method.)

2.1.1 Smooth convex functions

In this section we deal with the unconstrained minimization problem

min
x∈Rn

f(x), (2.1.1)

where the function f(x) is smooth enough. Recall that in the previous chapter we were trying
to solve this problem under very weak assumptions on function f . And we have seen that
in this general situation we cannot do too much: we cannot guarantee convergence even to
a local minimum, we cannot estimate the global performance of the minimization schemes,
etc. Let us try to introduce some reasonable assumptions on function f to make our problem
more tractable. To do that, let us try to fix the desired properties of a hypothetical class of
differentiable functions F we want to work with.

The main impression from the results of the previous chapter should be that one of
the reasons of our troubles is due to the weakness of the first order optimality condition
(Theorem 1.2.1). Indeed, we have seen that, in general, the gradient method converges only
to a stationary point of function f (see inequality (1.2.13) and Example 1.2.2). Therefore
the first additional assumption to be introduced should be as follows.

Assumption 2.1.1 For any f ∈ F the first order optimality condition is sufficient for a
point to be a global solution to (2.1.1).

Further, the main feature of any tractable functional class F is the possibility to verify
inclusion f ∈ F in a simple way. Usually that is provided by the set of the basic elements of
the class and by the list of possible operations with the elements, which keep the result in
the class (such operations are called invariant). The excellent example of such class is the

51
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class of differentiable functions: In order to check either a function is differentiable or not,
we need just to glance on its analytical form.

We don’t want to restrict our class too much. Therefore, let us introduce only one
invariant operation for our hypothetical class.

Assumption 2.1.2 If f1, f2 ∈ F and α, β ≥ 0 then αf1 + βf2 ∈ F .

The reason for the restriction on the sign of the coefficients in this assumption is evident:
We would like to see ‖ x ‖2 in our class, but the function − ‖ x ‖2 is clearly not suitable for
our goals.

Finally, let us make the last assumption.

Assumption 2.1.3 Any linear function f(x) = α + 〈a, x〉 belongs to F .1

Note that the linear function f(x) perfectly fits Assumption 2.1.1 since f ′(x) = 0 means that
this function is constant and any point in Rn is its global minimum.

It turns out, that we have already assumed enough to specify our functional class. Indeed,
let f ∈ F . Let us fix some x0 ∈ Rn and consider the function

φ(y) = f(y)− 〈f ′(x0), y〉.

Then φ ∈ F in view of Assumptions 2.1.2, 2.1.3. Note that

φ′(y) |y=x0= f ′(y) |y=x0 −f ′(x0) = 0.

Therefore, in view of Assumption 2.1.1, x0 is the global minimum of function φ and for any
y ∈ Rn we have:

φ(y) ≥ φ(x0) = f(x0)− 〈f ′(x0), x0〉.
Hence, f(y) ≥ f(x0) + 〈f ′(x0), x− x0〉.

This class is very well-known in optimization. It is the class of differentiable convex
functions.

Definition 2.1.1 A continuously differentiable function f(x) is called convex on Rn (nota-
tion f ∈ F1(Rn)) if for any x, y ∈ Rn we have:

f(y) ≥ f(x) + 〈f ′(x), y − x〉. (2.1.2)

If −f(x) is convex, we call f(x) concave. 2

In what follows we will consider also the classes of convex functions Fk,l
L (Q) with the same

meaning of the indices as for the classes Ck,l
L (Q).

Let us check our assumptions, which become now the properties of our problem class.

1It is not a description of the basic elements. We just say that we want to have the linear functions in
our class.
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Theorem 2.1.1 If f ∈ F1(Rn) and f ′(x∗) = 0 then x∗ is the global minimum of f(x) on
Rn.

Proof:
In view of the inequality (2.1.2), for any x ∈ Rn we have

f(x) ≥ f(x∗) + 〈f ′(x∗), x− x∗〉 = f(x∗). 2

Thus, we get what we want in Assumption 2.1.1. Let us check Assumption 2.1.2.

Lemma 2.1.1 If f1, f2 ∈ F1(Rn) and α, β ≥ 0 then f = αf1 + βf2 ∈ F1(Rn).

Proof:
For any x, y ∈ Rn we have:

f1(y) ≥ f1(x) + 〈f ′1(x), y − x〉, f2(y) ≥ f2(x) + 〈f ′2(x), y − x〉.

It remains to multiply the first equation by α, the second one by β and add the results. 2

The next statement significantly increases our possibilities in constructing the convex
functions.

Lemma 2.1.2 If f ∈ F1(Rm), b ∈ Rm and A : Rn → Rm then

φ(x) = f(Ax + b) ∈ F1(Rn).

Proof:
Indeed, let x, y ∈ Rn. Denote x̄ = Ax+ b, ȳ = Ay + b. Since φ′(x) = AT f ′(Ax+ b), we have:

φ(y) = f(ȳ) ≥ f(x̄) + 〈f ′(x̄), ȳ − x̄〉 = φ(x) + 〈f ′(x̄), A(y − x)〉

= φ(x) + 〈AT f ′(x̄), y − x〉 = φ(x) + 〈φ′(x), y − x〉. 2

In order to simplify the verification of inclusion f ∈ F1(Rn), we provide this class with
several equivalent definitions.

Theorem 2.1.2 Function f ∈ F1(Rn) if and only if it is continuously differentiable and for
any x, y ∈ Rn and α ∈ [0, 1] we have: 2

f(αx + (1− α)y) ≤ αf(x) + (1− α)f(y). (2.1.3)

2Note that the inequality (2.1.3) without the assumption on differentiability of f , serves as a definition
of general convex functions. We will study these functions in details in the next chapter.
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Proof:
Denote xα = αx + (1− α)y. 1. Let f ∈ F1(Rn). then

f(xα) ≤ f(y) + 〈f ′(xα), y − xα〉 = f(y) + α〈f ′(xα), y − x〉,

f(xα) ≤ f(x) + 〈f ′(xα), x− xα〉 = f(x)− (1− α)〈f ′(xα), y − x〉.
Multiplying the first inequality by (1 − α), the second one by α and adding the results, we
get (2.1.3).

2. Let (2.1.3) be true for all x, y ∈ Rn and α ∈ [0, 1]. Let us choose some α ∈ [0, 1).
Then

f(y) ≥ 1
1−α

[f(xα)− αf(x)] = f(x) + 1
1−α

[f(xα)− f(x)]

= f(x) + 1
1−α

[f(x + (1− α)(y − x))− f(x)].

Tending α to 1, we get (2.1.2). 2

Theorem 2.1.3 Function f ∈ F1(Rn) if and only if it is continuously differentiable and for
any x, y ∈ Rn we have:

〈f ′(x)− f ′(y), x− y〉 ≥ 0. (2.1.4)

Proof:
1. Let f be a convex continuously differentiable function. Then

f(x) ≥ f(y) + 〈f ′(y), x− y〉, f(y) ≥ f(x) + 〈f ′(x), y − x〉,
Adding these inequalities, we get (2.1.4).

2. Let (2.1.4) holds for all x, y ∈ Rn. Denote xτ = x + τ(y − x). Then

f(y) = f(x) +
1∫
0
〈f ′(x + τ(y − x)), y − x〉dτ

= f(x) + 〈f ′(x), y − x〉+
1∫
0
〈f ′(xτ )− f ′(x), y − x〉dτ

= f(x) + 〈f ′(x), y − x〉+
1∫
0

1
τ
〈f ′(xτ )− f ′(x), xτ − x〉dτ

≥ f(x) + 〈f ′(x), y − x〉. 2

Sometimes it is more convenient to work with the functions from the class F2(Rn) ⊂
F1(Rn).

Theorem 2.1.4 Function f ∈ F2(Rn) if and only if it is twice continuously differentiable
and for any x ∈ Rn we have:

f ′′(x) ≥ 0. (2.1.5)



2.1. MINIMIZATION OF SMOOTH FUNCTIONS 55

Proof:
1. Let f ∈ C2(Rn) be convex. Denote xτ = x + τs, τ > 0. Then, in view of (2.1.4), we
have:

0 ≤ 1

τ
〈f ′(xτ )− f ′(x), xτ − x〉 =

1

τ
〈f ′(xτ )− f ′(x), s〉 =

1

τ

τ∫

0

〈f ′′(x + λs)s, s〉dλ,

and we get (2.1.5) by tending τ → 0.
2. Let (2.1.5) holds for all x ∈ Rn. Then

f(y) = f(x) + 〈f ′(x), y − x〉+
1∫
0

τ∫
0
〈f ′′(x + λ(y − x))(y − x), y − x〉dλdτ

≥ f(x) + 〈f ′(x), y − x〉. 2

Now we are ready to look at some examples of the differentiable convex functions.

Example 2.1.1 1. Linear function f(x) = α + 〈a, x〉 is convex.

2. Let a matrix A be symmetric and positive semidefinite. Then the quadratic function

f(x) = α + 〈a, x〉+ 1
2
〈Ax, x〉

is convex (since f ′′(x) = A ≥ 0).

3. The following functions of one variable belong to F1(R):

f(x) = ex,

f(x) = | x |p, p > 1,

f(x) = x2

1−|x| ,

f(x) = | x | − ln(1+ | x |).
We can check that using Theorem 2.1.4.

Therefore, the function arising in Geometric Programming,

f(x) =
m∑

i=1

eαi+〈ai,x〉,

is convex (see Lemma 2.1.2). Similarly, the function arising in Lp-approximation problem,

f(x) =
m∑

i=1

| 〈ai, x〉 − bi |p,

is convex too. 2
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Same as with general nonlinear functions, the differentiability of convex function is not too
strong property to guarantee some special topological properties of the objects. Therefore
we need to consider the problem classes with Lipshitz continuous derivative of a certain
order. The most important class of that type is F1,1

L (Rn), the class of convex functions with
Lipshitz continuous gradient. Let us present several necessary and sufficient conditions for
that class.

Theorem 2.1.5 For inclusion f ∈ F1,1
L (Rn) all of the following conditions, holding for all

x, y ∈ Rn, are equivalent:

0 ≤ f(y)− f(x)− 〈f ′(x), y − x〉 ≤ L

2
‖ x− y ‖2, (2.1.6)

f(y) ≥ f(x) + 〈f ′(x), y − x〉+
1

2L
‖ f ′(x)− f ′(y) ‖2 . (2.1.7)

〈f ′(x)− f ′(y), x− y〉 ≥ 1

L
‖ f ′(x)− f ′(y) ‖2 . (2.1.8)

Proof:

Indeed, (2.1.6) follows from the definition of convex functions and Lemma 1.2.3. Further,
let us fix x0 ∈ Rn. Consider the function

φ(y) = f(y)− 〈f ′(x0), y〉.

Note that φ ∈ F1,1
L (Rn) and its optimal point is y∗ = x0. Therefore, in view of (2.1.6), we

have:

φ(y∗) ≤ φ(y − 1

L
φ′(y)) ≤ φ(y)− 1

2L
‖ φ′(y) ‖2 .

And we get (2.1.7) since φ′(y) = f ′(y)− f ′(x0).

We obtain (2.1.8) from (2.1.7) by adding two inequalities with x and y interchanged.

Finally, from (2.1.8) we conclude that f is convex and ‖ f ′(x)− f ′(y) ‖≤ L ‖ x− y ‖. 2

2.1.2 Lower complexity bounds for F∞,1
L (Rn)

Thus, we have introduced the problem class we are going to deal with and described the
main properties of these functions. However, before to go forward with the optimization
methods, let us check our possibilities in minimizing smooth convex functions. To do that,
in this section we will obtain the lower complexity bounds for the problem class F∞,1

L (Rn)
(and, consequently, for F1,1

L (Rn)).

Recall that our problem is

min
x∈Rn

f(x),
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and the description of the problem class is as as follows:

Problem class: f ∈ F1,1
L (Rn).

Oracle: First-order black box.

Approximate solution: x̄ ∈ Rn, f(x̄)− f ∗ ≤ ε.

In order to simplify our considerations, let us introduce the following assumption on the
iterative processes.

Assumption 2.1.4 An iterative method M generates a sequence of test points {xk} such
that

xk ∈ x0 + Lin {f ′(x0), . . . , f
′(xk−1)}, k ≥ 1.

This assumption is rather technical and it can be avoided by a more sophisticated reasoning.
However, note that the most of practical methods satisfy Assumption 2.1.4.

In order to prove the lower complexity bounds for our problem class, we are not going
to develop a resisting oracle as it was done in Section 1.1. Instead, we just point out the
“worst function in the world” (we mean, in F∞,1

L (Rn)), which is bad for all iterative schemes
satisfying Assumption 2.1.4.

Let us fix some constant L > 0. Consider the family of quadratic functions

fk(x) =
L

4

{
1
2
[(x(1))2 +

k−1∑

i=1

(x(i) − x(i+1))2 + (x(k))2]− x(1)

}
, k = 1, . . . , n.

Note that for all s ∈ Rn we have:

〈f ′′k (x)s, s〉 =
L

4

[
(s(1))2 +

k−1∑

i=1

(s(i) − s(i+1))2 + (s(k))2

]
≥ 0,

and

〈f ′′k (x)s, s〉 ≤ L

4
[(s(1))2 +

k−1∑

i=1

2((s(i))2 + (s(i+1))2) + (s(k))2] ≤ L
n∑

i=1

(s(i))2.

Thus, 0 ≤ f ′′k (x) ≤ LIn. Therefore fk(x) ∈ F∞,1
L (Rn), 1 ≤ k ≤ n.

Let us compute the minimum of function fk. It is easy to see that f ′′k (x) = L
4
Ak with

Ak =




2 −1 0
−1 2 −1

0 −1 2
0

. . . . . .

0
−1 2 −1

0 −1 2





k lines

0n−k,k 0n−k,n−k




,
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where 0k,p is (k × p) zero matrix. Therefore the equation

f ′k(x) = Akx− e1 = 0

has the following unique solution:

x̄
(i)
k =





1− i
k+1

, i = 1, . . . , k,

0, k + 1 ≤ i ≤ n.

Hence, the optimal value of function fk is

f ∗k =
L

4

[
1
2
〈Akx̄k, x̄k〉 − 〈e1, x̄k〉

]
= −L

8
〈e1, x̄k〉 =

L

8

(
−1 +

1

k + 1

)
.

Note also that

‖ x̄k ‖2 =
n∑

i=1
(x̄

(i)
k )2 =

k∑
i=1

(
1− i

k+1

)2
k − 2

k+1

k∑
i=1

i + 1
(k+1)2

k∑
i=1

i2

≤ k − 2
k+1

· k(k+1)
2

+ 1
(k+1)2

· (k+1)3

3
= 1

3
(k + 1).

(We have used the following simple fact: if ξ(t) is an increasing function, then

m∫

q−1

ξ(τ)dτ ≤
m∑

i=q

ξ(i) ≤
m+1∫

q

ξ(τ)dτ.)

Denote Rk,n = {x ∈ Rn | x(i) = 0, k + 1 ≤ i ≤ n}; that is a subspace of Rn, in which
only first k components of the point can differ from zero. From the analytical form of the
functions {fk} it is easy to see that for all x ∈ Rk,n we have

fp(x) = fk(x), p = k, . . . , n.

Let us fix some p, 1 ≤ p ≤ n.

Lemma 2.1.3 Let x0 = 0. Then for any sequence {xk}p
k=0:

xk ∈ Lk = Lin {f ′p(x0), . . . , f
′
p(xk−1)},

we have Lk ⊆ Rk,n.

Proof:
Indeed, since x0 = 0 we have f ′p(x0) = −L

4
e1 ∈ R1,n. Therefore L1 ≡ R1,n.

Let Lk ⊆ Rk,n for some k < p. Since Ap is three-diagonal, for any x ∈ Rk,n we have
f ′p(x) ∈ Rk+1,n. Therefore Lk+1 ⊆ Rk+1,n, and we can complete the proof by induction. 2
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Corollary 2.1.1 For any sequence {xk}p
k=0 such that x0 = 0 and xk ∈ Lk we have

fp(xk) ≥ f ∗k .

Proof:
Indeed, xk ∈ Lk ⊆ Rk,n and therefore fp(xk) = fk(xk) ≥ f ∗k . 2

Now we are ready to prove the main result of this section.

Theorem 2.1.6 For any k, 1 ≤ k ≤ 1
2
(n − 1), and any x0 ∈ Rn there exists a function

f ∈ F∞,1
L (Rn) such that for any first order method M satisfying Assumption 2.1.4 we have

f(xk)− f ∗ ≥ 3L‖x0−x∗‖2
32(k+1)2

,

‖ xk − x∗ ‖2≥ 1
32
‖ x0 − x∗ ‖2,

where x∗ is the minimum of f(x) and f ∗ = f(x∗).

Proof:
It is clear that the methods of this type are invariant with respect to the simultaneous shift
of the starting point and the space of variables. Thus, the sequence of iterates, generated
by such method for function f(x) using a starting point x0, is just a shift of the sequence
generated for f̄(x) = f(x + x0) using the origin as the starting point. Therefore, we can
assume that x0 = 0.

Let us prove the first inequality. For that, let us fix k and apply M to minimizing
f(x) = f2k+1(x). Then x∗ = x̄2k+1 and f ∗ = f ∗2k+1. Using Corollary 2.1.1, we conclude that

f(xk) = f2k+1(xk) = fk(xk) ≥ f ∗k .

Hence, since x0 = 0, we come to the following estimate:

f(xk)− f ∗

‖ x0 − x∗ ‖2
≥

L
8

(
−1 + 1

k+1
+ 1− 1

2k+2

)

1
3
(2k + 2)

=
3

8
L · 1

4(k + 1)2
.

Let us prove the second inequality. Since xk ∈ Rk,n and x0 = 0, we have:

‖ xk − x∗ ‖2 ≥ 2k+1∑
i=k+1

(x̄
(i)
2k+1)

2 =
2k+1∑
i=k+1

(
1− i

2k+2

)2

= k + 1− 1
k+1

2k+1∑
i=k+1

i + 1
4(k+1)2

2k+1∑
i=k+1

i2

≥ k + 1− 1
k+1

· (k+1)(3k+2)
2

+ 1
4(k+1)2

· (2k+1)3−k3

3

= k2−k+1
12(k+1)

≥ k+1
48
≥ 1

32
‖ x0 − x̄2k+1 ‖2 .
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2

We should mention that, using a more sophisticated analysis, it is possible to prove

the following exact lower bound: f(xk) − f ∗ ≥ L‖x0−x∗‖2
8(k+1)2

. It is also possible to prove that

‖ xk − x∗ ‖2≥ β ‖ x0 − x∗ ‖2, where the constant β can be arbitrary close to one.
The above theorem is valid only under assumption that the number of steps of the

iterative scheme is not too large as compared with the dimension of the space (k ≤ 1
2
(n−1)).

The complexity bounds of that type are called uniform in the dimension. Clearly, they are
valid for very large problems, in which we cannot wait even for n iterates of the method.
However, even for the problems with a moderate dimension, these bounds also provide us
with some information. First, they describe the potential performance of numerical methods
on the initial stage of the minimization process. And second, they just warn us that without
a direct use of finite-dimensional arguments we cannot get better complexity estimate for
any numerical method.

To conclude this section, let us note that the obtained lower bound for the value of the
objective is rather optimistic. Indeed, after one hundred iteration we could decrease the
initial residual in 104 times. However, the result on the behavior of the minimizing sequence
is very discouraging. We have to accept that the convergence to the optimal point can
be arbitrary slow. Since that is a lower bound, this conclusion is inevitable for the class
F∞,1

L (Rn). The only thing we can do, is to try to fix out the problem classes, in which the
situation is better. That is the goal of the next section.

2.1.3 Strongly convex functions

Thus, we are looking for a restriction of the problem class

min
x∈Rn

f(x), f ∈ F1(Rn),

which can guarantee a reasonable rate of convergence to the minimum of function f(x).
Recall, that in Section 1.2 we have proved a linear rate of convergence of the gradient method
in a small neighborhood of a strict local minimum. Let us try to make this assumption global.
Namely, let us assume that there exist some constant µ > 0 such that for any x̄ with f ′(x̄) = 0
we have

f(x) ≥ f(x̄) + 1
2
µ ‖ x− x̄ ‖2

for all x ∈ Rn.
Using the same reasoning as in Section 2.1.1, we obtain the class of strongly convex

functions.

Definition 2.1.2 A continuously differentiable function f(x) is called strongly convex on
Rn (notation f ∈ S1

µ(Rn)) if there exists a constant µ > 0 such that for any x, y ∈ Rn we
have:

f(y) ≥ f(x) + 〈f ′(x), y − x〉+ 1
2
µ ‖ y − x ‖2 . (2.1.9)
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We will also consider the classes Sk,l
µ,L(Q) with the same meaning of the indices k, l and L as

for the class Ck,l
L (Q).

Let us fix some properties of strongly convex functions.

Theorem 2.1.7 If f ∈ S1
µ(Rn) and f ′(x∗) = 0 then

f(x) ≥ f(x∗) + 1
2
µ ‖ x− x∗ ‖2

for all x ∈ Rn.

Proof:
Since f ′(x∗) = 0, in view of the definition for any x ∈ Rn we have

f(x) ≥ f(x∗) + 〈f ′(x∗), x− x∗〉+ 1
2
µ ‖ x− x∗ ‖2= f(x∗) + 1

2
µ ‖ x− x∗ ‖2 . 2

The following result demonstrates how we can add strongly convex functions.

Lemma 2.1.4 If f1 ∈ S1
µ1

(Rn), f2 ∈ S1
µ2

(Rn) and α, β ≥ 0 then

f = αf1 + βf2 ∈ S1
αµ1+βµ2

(Rn).

Proof:
For any x, y ∈ Rn we have:

f1(y) ≥ f1(x) + 〈f ′1(x), y − x〉+ 1
2
µ1 ‖ y − x ‖2

f2(y) ≥ f2(x) + 〈f ′2(x), y − x〉+ 1
2
µ2 ‖ y − x ‖2 .

It remains to multiply these equations by α and β and add the results. 2

Note that the class S1
0 (Rn) is equivalent to F1(Rn). Therefore adding a strongly convex

function with a convex function we get a strongly convex function with the same constant
µ.

Let us give several equivalent definitions of the strongly convex functions.

Theorem 2.1.8 Function f ∈ S1
µ(Rn) if and only if it is continuously differentiable and for

any x, y ∈ Rn and α ∈ [0, 1] we have:

f(αx + (1− α)y) ≤ αf(x) + (1− α)f(y)− α(1− α)
µ

2
‖ x− y ‖2 . (2.1.10)

Theorem 2.1.9 Function f ∈ S1
µ(Rn) if and only if it is continuously differentiable and for

any x, y ∈ Rn we have:

〈f ′(x)− f ′(y), x− y〉 ≥ µ ‖ x− y ‖2 . (2.1.11)
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Theorem 2.1.10 Function f ∈ S2
µ(Rn) if and only if it is twice continuously differentiable

and for any x ∈ Rn we have:

f ′′(x) ≥ µIn. (2.1.12)

The proofs of these theorems are very similar to those of Theorems 4.2 – 4.4 and we leave
them as an exercise for the reader.

Note we can give several examples of strongly convex functions.

Example 2.1.2 1. f(x) = 1
2
‖ x ‖2 belongs to S2

1 (Rn) since f ′′(x) = In.

2. Let the symmetric matrix A satisfy the condition: µIn ≤ A ≤ LIn. Then

f(x) = α + 〈a, x〉+ 1
2
〈Ax, x〉 ∈ S∞,1

µ,L (Rn) ⊂ S1,1
µ,L(Rn)

since f ′′(x) = A.
Other examples can be obtained as a sum of convex and strongly convex functions. 2

The class of our main interest is S1,1
µ,L(Rn). This class is described by the following

inequalities:

〈f ′(x)− f ′(y), x− y〉 ≥ µ ‖ x− y ‖2, (2.1.13)

‖ f ′(x)− f ′(y) ‖≤ L ‖ x− y ‖ . (2.1.14)

The value Qf = L/µ (≥ 1) is called the condition number of the function f .
It is important that the inequality (2.1.13) can be strengthen using the condition (2.1.14).

Theorem 2.1.11 If f ∈ S1,1
µ,L(Rn) then for any x, y ∈ Rn we have:

〈f ′(x)− f ′(y), x− y〉 ≥ µL
µ+L

‖ x− y ‖2 + 1
µ+L

‖ f ′(x)− f ′(y) ‖2 . (2.1.15)

Proof:
Consider φ(x) = f(x)− 1

2
µ ‖ x ‖2. Note that φ′(x) = f ′(x)− µx. Therefore this function is

convex (see Theorem 2.1.3). Moreover, in view of (2.1.6)

φ(y) = f(y)− 1
2
µ ‖ y ‖2≤ f(x) + 〈f ′(x), y − x〉+ 1

2
L ‖ x− y ‖2 −1

2
µ ‖ y ‖2

= φ(x) + 〈φ′(x), y − x〉+ 1
2
(L− µ) ‖ x− y ‖2 .

Therefore φ ∈ F1,1
L−µ(Rn) (see Theorem 2.1.5). Thus,

〈φ′(x)− φ′(y), y − x〉 ≥ 1
L−µ

‖ φ′(x)− φ′(y) ‖2

and that inequality can be rewritten as (2.1.15). 2
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2.1.4 Lower complexity bounds for S1,1
µ,L(Rn)

Let us get the lower complexity bounds for the class S1,1
µ,L(Rn). Consider the problem

min
x∈Rn

f(x).

The description of our problem class is as as follows:

Problem class: f ∈ S1,1
µ,L, µ > 0(Rn).

Oracle: First-order black box.

Approximate solution: x̄ ∈ Rn, f(x̄)− f ∗ ≤ ε, ‖ x̄− x∗ ‖2≤ ε.

Same as in the previous section, we consider the methods satisfying Assumption 2.1.4. We
are going to find the lower complexity bounds for our problem in terms of condition number.

Note that in the description of our problem class we don’t say anything about the di-
mension of our problem. Therefore formally, our problem class includes also the infinite-
dimensional problems.

We are going to give an example of some bad function defined in the infinite-dimensional
space. We could do that also for finite dimension, but the corresponding reasoning is more
complicated.

Consider R∞ ≡ l2, the space of all sequences x = {x(i)}∞i=1 with finite norm

‖ x ‖2=
∞∑

i=1

(x(i))2 < ∞.

Let us choose some parameters µ > 0 and Qf > 1, which define the following function

fµ,Qf
(x) =

µ(Qf − 1)

4

{
1
2
[(x(1))2 +

∞∑

i=1

(x(i) − x(i+1))2]− x(1)

}
+ 1

2
µ ‖ x ‖2 .

Denote

A =




2 −1 0
−1 2 −1

0 −1 2
0

0 . . .


 .

Then f ′′(x) =
µ(Qf−1)

4
A + µI, where I is the unit operator in R∞. In the previous section

we have already seen that 0 ≤ A ≤ 4I. Therefore

µI ≤ f ′′(x) ≤ (µ(Qf − 1) + µ)I = µQfI.

This means that fµ,Qf
∈ S∞,1

µ,µQf
(R∞). Note the the condition number of function fµ,Qf

is

Qfµ,Qf
=

µQf

µ
= Qf .
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Let us find the minimum of function fµ,µQf
. The first order optimality condition

f ′µ,µQf
(x) ≡

(
µ(Qf − 1)

4
A + µI

)
x− µ(Qf − 1)

4
e1 = 0

can be written as: (
A +

4

Qf − 1

)
x = e1.

The coordinate form of this equation is as follows:

2
Qf+1

Qf−1
x(1) − x(2) = 1,

x(k+1) − 2
Qf+1

Qf−1
x(k) + x(k−1) = 0, k = 2, . . . .

Let q be the smallest root of the equation

q2 − 2
Qf + 1

Qf − 1
q + 1 = 0,

that is q =

√
Qf−1√
Qf+1

. Then the sequence (x∗)(k) = qk, k = 1, 2, . . ., satisfies our system. Thus,

we come to the following result.

Theorem 2.1.12 For any x0 ∈ R∞ and any constants µ > 0, Qf > 1 there exists a function
f ∈ S∞,1

µ,µQf
(R∞) such that for any first order method M satisfying Assumption 2.1.4, we have

‖ xk − x∗ ‖2≥
(√

Qf−1√
Qf+1

)2k

‖ x0 − x∗ ‖2,

f(xk)− f ∗ ≥ µ
2

(√
Qf−1√
Qf+1

)2k

‖ x0 − x∗ ‖2,

where x∗ is the minimum of function f and f ∗ = f(x∗).

Proof:
Indeed, we can assume that x0 = 0. Let us choose f(x) = fµ,µQf

(x). Then

‖ x0 − x∗ ‖2=
∞∑

i=1

[(x∗)(i)]2 =
∞∑

i=1

q2i =
q2

1− q2
.

Since f ′′µ,µQf
(x) is a three-diagonal operator and f ′µ,µQf

(0) = e1, we conclude that xk ∈ Rk,∞.
Therefore

‖ xk − x∗ ‖2≥
∞∑

i=k+1

[(x∗)(i)]2 =
∞∑

i=k+1

q2i =
q2(k+1)

1− q2
= q2k ‖ x0 − x∗ ‖2 .

The second estimate of the theorem follows from the first one and the definition of
strongly convex functions. 2
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2.1.5 Gradient Method

As usual, the first method to be tried in the new situation is the gradient method. Let us
check how it works on the problem

min
x∈Rn

f(x)

with f ∈ F1,1
L (Rn). Recall that the scheme of the gradient method is as follows.

0. Choose x0 ∈ Rn.

1. kth iteration (k ≥ 0).

a). Compute f(xk) and f ′(xk).

b). Find xk+1 = xk − hkf
′(xk) (see Lecture 2 for the step-size rules). 2

In this section we analyze this scheme in the simplest case, when hk = h > 0. It is
possible to show that for all other step-size rules the rate of convergence of the gradient
method remains the same.

Theorem 2.1.13 If f ∈ F1,1
L (Rn) and 0 < h < 2

L
then the gradient method generates the

sequence {xk} such that

f(xk)− f ∗ ≤ 2(f(x0)− f ∗) ‖ x0 − x∗ ‖2

2 ‖ x0 − x∗ ‖2 +(f(x0)− f ∗)h(2− Lh)k
.

Proof:
Denote rk =‖ xk − x∗ ‖. Then

r2
k+1 =‖ xk − x∗ − hf ′(xk) ‖2

= r2
k − 2h〈f ′(xk), xk − x∗〉+ h2 ‖ f ′(xk) ‖2

≤ r2
k − h( 2

L
− h) ‖ f ′(xk) ‖2

(we use (2.1.8) and f ′(x∗) = 0). Therefore rk ≤ r0. In view of (2.1.6) we have:

f(xk+1) ≤ f(xk) + 〈f ′(xk), xk+1 − xk〉+ L
2
‖ xk+1 − xk ‖2

= f(xk)− ω ‖ f ′(xk) ‖2,

where ω = h(1− L
2
h). Denote ∆k = f(xk)− f ∗. Then

∆k ≤ 〈f ′(xk), xk − x∗〉 ≤ r0 ‖ f ′(xk) ‖ .

Therefore ∆k+1 ≤ ∆k − ω
r2
0
∆2

k. Thus,

1

∆k+1

≥ 1

∆k

+
ω

r2
0

· ∆k

∆k+1

≥ 1

∆k

+
ω

r2
0

.
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Summarizing these inequalities, we get

1

∆k+1

≥ 1

∆0

+
ω

r2
0

(k + 1).

2

In order to choose the optimal step size, we need to maximize the function φ(h) =
h(2 − Lh) with respect to h. The first-order optimality condition φ′(h) = 2 − 2Lh = 0
provides us with the following value: h∗ = 1

L
. In this case we get the following efficiency

estimate of the gradient method:

f(xk)− f ∗ ≤ 2L(f(x0)− f ∗) ‖ x0 − x∗ ‖2

2L ‖ x0 − x∗ ‖2 +(f(x0)− f ∗)k
. (2.1.16)

Further, in view of (2.1.6) we have

f(x0) ≤ f ∗ + 〈f ′(x∗), x0 − x∗〉+
L

2
‖ x0 − x∗ ‖2= f ∗ +

L

2
‖ x0 − x∗ ‖2 .

Since the right hand side of inequality (2.1.16) is increasing in f(x0)−f ∗, we get the following
result.

Corollary 2.1.2 If h = 1
L

and f ∈ F1,1
L (Rn) then

f(xk)− f ∗ ≤ 2L ‖ x0 − x∗ ‖2

k + 4
. (2.1.17)

Let us estimate the performance of the gradient method on the class of strongly convex
functions.

Theorem 2.1.14 If f ∈ S1,1
µ,L(Rn) and 0 < h ≤ 2

µ+L
then the gradient method generates a

sequence {xk} such that

‖ xk − x∗ ‖2≤
(

1− 2hµL

µ + L

)k

‖ x0 − x∗ ‖2 .

If h = 2
µ+L

then

‖ xk − x∗ ‖≤
(

Qf−1

Qf+1

)k ‖ x0 − x∗ ‖,

f(xk)− f ∗ ≤ L
2

(
Qf−1

Qf+1

)2k ‖ x0 − x∗ ‖2,

where Qf = L/µ.
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Proof:
Denote rk =‖ xk − x∗ ‖. Then

r2
k+1 =‖ xk − x∗ − hf ′(xk) ‖2

= r2
k − 2h〈f ′(xk), xk − x∗〉+ h2 ‖ f ′(xk) ‖2

≤
(
1− 2hµL

µ+L

)
r2
k + h

(
h− 2

µ+L

)
‖ f ′(xk) ‖2

(we use (2.1.15) and f ′(x∗) = 0). The last inequality in the theorem follows from the previous
one and (2.1.6). 2

Recall that we have already seen the step-size rule h = 2
µ+L

and the linear rate of
convergence of the gradient method in Section 1.2, Theorem 1.2.4. But that were only the
local results.

Comparing the rate of convergence of the gradient method with the lower complexity
bounds (Theorems 2.1.6, 2.1.12), we can see that the gradient method is far to be optimal
for the classes F1,1

L (Rn) and S1,1
µ,L(Rn). We should also note that standard unconstrained

minimization methods (conjugate gradients, variable metric) have the similar efficiency es-
timates on these problem classes. The optimal methods for smooth convex and strongly
convex functions will be considered in the next lecture.

2.2 Optimal Methods

(Optimal Methods; Convex Sets; Constrained Minimization Problem; Gradient Mapping;
Minimization Methods over a simple set.)

2.2.1 Optimal Methods

In this section we consider the unconstrained minimization problem

min
x∈Rn

f(x),

with f being strongly convex: f ∈ S1,1
µ,L(Rn). Formally, we include in this family of classes

the class of convex function with Lipshitz gradient allowing the value µ = 0 (recall that
(S1,1

0,L(Rn) ≡ F1,1
L (Rn)).

In the previous section we proved the following efficiency estimates for the gradient
method

F1,1
L (Rn) : f(xk)− f ∗ ≤ 2L‖x0−x∗‖2

k+4
,

S1,1
µ,L(Rn) : f(xk)− f ∗ ≤ L

2

(
L−µ
L+µ

)2k ‖ x0 − x∗ ‖2 .
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These estimates do not coincide with our lower complexity bounds (Theorems 2.1.6, 2.1.12).
Of course, in general that does not mean that the method is not optimal since it could be
that the lower bounds are too pessimistic. However, we will see that in our case the lower
bounds are exact. We prove that by constructing a method, which has them as its efficiency
estimates.

Recall that the gradient method forms a relaxation sequence: f(xk+1) ≤ f(xk). This fact
is crucial in the analysis of its convergence rate (Theorem 2.1.13). In Convex Optimization
the optimal methods never rely on relaxation. First, for some problem classes it is too
expensive for optimality. Second, the schemes and the efficiency estimates of the optimal
methods are derived from the global topological properties of convex functions. From that
point of view, the relaxation is too “microscopic” property to be useful.

In smooth convex optimizations the schemes and the efficiency estimates of optimal
methods are based on the notion of estimate sequence.

Definition 2.2.1 A pair of sequences {φk(x)}∞k=0 and {λk}∞k=0, λk ≥ 0 is called an estimate
sequence of function f(x) if λk → 0 and for any x ∈ Rn and all k ≥ 0 we have:

φk(x) ≤ (1− λk)f(x) + λkφ0(x). (2.2.1)

At the first glance, this definition looks rather artificial. But we will see very soon how
it works. The next statement explains why we could need all of that.

Lemma 2.2.1 If for a sequence {xk} we have

f(xk) ≤ φ∗k ≡ min
x∈Rn

φk(x) (2.2.2)

then f(xk)− f ∗ ≤ λk[φ0(x
∗)− f ∗] → 0.

Proof:
Indeed,

f(xk) ≤ φ∗k = min
x∈Rn

φk(x) ≤ min
x∈Rn

[(1− λk)f(x) + λkφ0(x)] ≤ (1− λk)f(x∗) + λkφ0(x
∗).

2

Thus, for any sequence {xk}, satisfying (2.2.2) we can derive the rate of convergence of the
minimization process directly from the rate of convergence of the sequence {λk}. Definitely,
that is a good news. However, at this moment we have two serious questions. First, we don’t
know how to form an estimate sequence. And second, we don’t know how we can ensure
(2.2.2). The first question is simpler, so let us answer it.

Lemma 2.2.2 Let us assume that:

1. f ∈ S1,1
µ,L(Rn).

2. φ0(x) is an arbitrary function on Rn.
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3. {yk}∞k=0 is an arbitrary sequence in Rn.

4. {αk}∞k=0 : αk ∈ (0, 1),
∞∑

k=0
αk = ∞.

5. λ0 = 1.

Then the pair of sequences {φk(x)}∞k=0, {λk}∞k=0 defined by the following recursive rules:

λk+1 = (1− αk)λk,

φk+1(x) = (1− αk)φk(x) + αk[f(yk) + 〈f ′(yk), x− yk〉+ µ
2
‖ x− yk ‖2],

(2.2.3)

is an estimate sequence.

Proof:
Indeed, φ0(x) ≤ (1 − λ0)f(x) + λ0φ0(x) ≡ φ0(x). Further, let (2.2.1) holds for some k ≥ 0.
Then

φk+1(x) ≤ (1− αk)φk(x) + αkf(x)

= (1− (1− αk)λk)f(x) + (1− αk)(φk(x)− (1− λk)f(x))

≤ (1− (1− αk)λk)f(x) + (1− αk)λkφ0(x)

= (1− λk+1)f(x) + λk+1φ0(x).

It remains to note that condition 4) ensures λk → 0. 2

Thus, the above statement provides us with some rules for updating the estimate sequence
by a recursion. Now we have two control sequences, which could help us to ensure inequality
(2.2.2). Note that we are also free in the choice of initial function φ0(x). Let us choose it as
a simple quadratic function. The we can obtain the exact description of the way φ∗k varies.

Lemma 2.2.3 Let φ0(x) = φ∗0 + γ0

2
‖ x− v0 ‖2. Then the process (2.2.3) forms

φk(x) ≡ φ∗k +
γk

2
‖ x− vk ‖2, (2.2.4)

where the sequences {γk}, {vk} and {φ∗k} are defined as follows:

γk+1 = (1− αk)γk + αkµ,

vk+1 = 1
γk+1

[(1− αk)γkvk + αkµyk − αkf
′(yk)],

φ∗k+1 = (1− αk)φk + αkf(yk)− α2
k

2γk+1
‖ f ′(yk) ‖2

+αk(1−αk)γk

γk+1

(
µ
2
‖ yk − vk ‖2 +〈f ′(yk), vk − yk〉

)
.
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Proof:
Note that φ′′0(x) = γ0In. Let us prove that φ′′k(x) = γkIn for all k ≥ 0. Indeed, if that is true
for some k, then

φ′′k+1(x) = (1− αk)φ
′′
k(x) + αkµIn = ((1− αk)γk + αkµ)In ≡ γk+1In.

This prove the canonical form (2.2.4) of functions φk(x).
Further,

φk+1(x) = (1− αk)
(
φ∗k + γk

2
‖ x− vk ‖2

)

+αk[f(yk) + 〈f ′(yk), x− yk〉+ µ
2
‖ x− yk ‖2].

Therefore the equation φ′k+1(x) = 0, which is the first order optimality condition for function
φk+1(x), looks as follows:

(1− αk)γk(x− vk) + αkf
′(yk) + αkµ(x− yk) = 0.

From that we get the equation for vk+1, which is the minimum of φk+1(x).
Finally, let us compute φ∗k+1. In view of the recursion rule for the sequence {φk(x)}, we

have:

φ∗k+1 +
γk+1

2
‖ yk − vk+1 ‖2= φk+1(yk) = (1− αk)

(
φ∗k +

γk

2
‖ yk − vk ‖2

)
+ αkf(yk). (2.2.5)

Note that in view of the relation for vk+1,

vk+1 − yk =
1

γk+1

[(1− αk)γk(vk − yk)− αkf
′(yk)].

Therefore
γk+1

2
‖ vk+1 − yk ‖2= 1

2γk+1
[(1− αk)

2γ2
k ‖ vk − yk ‖2

−2αk(1− αk)γk〈f ′(yk), vk − yk〉+ α2
k ‖ f ′(yk) ‖2].

It remains to substitute this relation in (2.2.5) noting that the factor of the term ‖ yk−vk ‖2

in this expression is as follows:

(1− αk)
γk

2
− 1

2γk+1

(1− αk)
2γ2

k = (1− αk)
γk

2

(
1− (1− αk)γk

γk+1

)
= (1− αk)

γk

2
· αkµ

γk+1

.

2

Now the situation is much clear and we are close to get an algorithmic scheme. Indeed,
assume that we already have xk: φ∗k ≥ f(xk). Then, in view of the previous lemma,

φ∗k+1 ≥ (1− αk)f(xk) + αkf(yk)− α2
k

2γk+1
‖ f ′(yk) ‖2

+αk(1−αk)γk

γk+1
〈f ′(yk), vk − yk〉.
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Since f(xk) ≥ f(yk) + 〈f ′(yk), xk − yk〉, we get the following estimate:

φ∗k+1 ≥ f(yk)− α2
k

2γk+1

‖ f ′(yk) ‖2 +(1− αk)〈f ′(yk),
αkγk

γk+1

(vk − yk) + xk − yk〉.

Let us look at this inequality. We want to have φ∗k+1 ≥ f(xk+1). Recall, that we can ensure
the inequality

f(yk)− 1

2L
‖ f ′(yk) ‖2≥ f(xk+1)

in many different ways. The simplest one is just the gradient step xk+1 = yk−hkf
′(xk) with

hk = 1
L

(see (2.1.6)). Let us define αk as follows:

Lα2
k = (1− αk)γk + αkµ (= γk+1).

Then
α2

k

2γk+1
= 1

2L
and we can replace the previous inequality by the following:

φ∗k+1 ≥ f(xk+1) + (1− αk)〈f ′(yk),
αkγk

γk+1

(vk − yk) + xk − yk〉.

Now we can use our freedom in the choice of yk, namely, let us find it from the equation:

αkγk

γk+1

(vk − yk) + xk − yk = 0.

That is

yk =
αkγkvk + γk+1xk

γk + αkµ
.

Thus, we come to the following

General scheme (2.2.6)

0. Choose x0 ∈ Rn and γ0 > 0. Set v0 = x0.

1. kth iteration (k ≥ 0).

a). Compute αk ∈ (0, 1) from the equation

Lα2
k = (1− αk)γk + αkµ.

Set γk+1 = (1− αk)γk + αkµ.

b). Choose

yk =
αkγkvk + γk+1xk

γk + αkµ
.

Compute f(yk) and f ′(yk).

c). Find xk+1 such that

f(xk+1) ≤ f(yk)− 1

2L
‖ f ′(yk) ‖2
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(see Lecture 2 for the step-size rules).

d). Set

vk+1 =
1

γk+1

[(1− αk)γkvk + αkµyk − αkf
′(yk)]. 2

Note that in Step 1c) of the scheme we can choose any xk+1 satisfying the following
inequality

f(xk+1) ≤ f(yk)− ω

2
‖ f ′(yk) ‖2

with some ω > 0. Then the constant 1
ω

should replace L in the equation of Step 1a).

Theorem 2.2.1 The scheme (2.2.6) generates a sequence {xk}∞k=0 such that

f(xk)− f ∗ ≤ λk

[
f(x0)− f ∗ +

γ0

2
‖ x0 − x∗ ‖2

]
,

where λ0 = 1 and λk = Πk−1
i=0 (1− αi).

Proof:
Indeed, let us choose φ0(x) = f(x0) + γ0

2
‖ x− v0 ‖2. Then

f(x0) = φ∗0

and we get f(xk) ≤ φ∗k by construction of the scheme. It remains to use Lemma 2.2.1. 2

Thus, in order to estimate the rate of convergence of this scheme, we need only to
understand how fast λk goes to zero.

Lemma 2.2.4 If in the scheme (2.2.6) we choose γ0 ≥ µ, then

λk ≤ min

{(
1−

√
µ

L

)k

,
4L

(2
√

L + k
√

γ0)2

}
.

Proof:
Indeed, if γk ≥ µ then

γk+1 = Lα2
k = (1− αk)γk + αkµ ≥ µ.

Since γ0 ≥ µ, we conclude that it is true for all γk. Hence, αk ≥
√

µ
L

and we have proved

the first statement of the lemma.
Further, let us prove that γk ≥ γ0λk. Indeed, since γ0 = γ0λ0, we can use induction:

γk+1 ≥ (1− αk)γk ≥ (1− αk)γ0λk = γ0λk+1.

Therefore Lα2
k = γk+1 ≥ γ0λk+1.
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Denote ak = 1√
λk

. Since {λk} decrease, we have:

ak+1 − ak =
√

λk−
√

λk+1√
λkλk+1

= λk−λk+1√
λkλk+1(

√
λk+
√

λk+1)

≥ λk−λk+1

2λk

√
λk+1

= λk−(1−αk)λk

2λk

√
λk+1

= αk

2
√

λk+1

≥ 1
2

√
γ0

L
.

Thus, ak ≥ 1 + k
2

√
γ0

L
and the lemma is proved. 2

Let us present the exact statement on optimality of our scheme.

Theorem 2.2.2 Let us take in (2.2.6) γ0 = L. Then this scheme generates a sequence
{xk}∞k=0 such that

f(xk)− f ∗ ≤ L min
{(

1−
√

µ
L

)k
, 4

(k+2)2

}
‖ x0 − x∗ ‖2 .

This means that it is optimal for the class S1,1
µ,L(Rn) with µ ≥ 0.

Proof:
We get the above inequality using f(x0) − f ∗ ≤ L

2
‖ x0 − x∗ ‖2 and Theorem 2.2.1 with

Lemma 2.2.4.
Further, from the lower complexity bounds for the class S1,1

µ,L(Rn), µ > 0, we have:

f(xk)− f ∗ ≥ µ

2




√
Qf − 1

√
Qf + 1




2k

R2 ≥ µ

2
exp


− 4k√

Qf − 1


 R2,

where Qf = L/µ and R =‖ x0− x∗ ‖. Therefore, the worst case estimate for finding xk such
that f(xk)− f ∗ ≤ ε cannot be better than

k ≥
√

Qf − 1

4

[
ln

1

ε
+ ln

µ

2
+ 2 ln R

]
.

For our scheme we have:

f(xk)− f ∗ ≤ LR2
(
1−

√
µ

L

)k

≤ LR2exp


− k√

Qf


 .

Therefore we guarantee that

k ≤
√

Qf

[
ln 1

ε
+ ln L + 2 ln R

]
.

Thus, the main term in this estimate,
√

Qf ln 1
ε
, is proportional to the lower bound. The

same reasoning can be used for the class S1,1
0,L(Rn). 2

Let us analyze a variant of the scheme (2.2.6), which uses the gradient step for finding
the point xk+1.

Constant Step Scheme, I (2.2.7)
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0. Choose x0 ∈ Rn and γ0 > 0. Set v0 = x0.

1. kth iteration (k ≥ 0).

a). Compute αk ∈ (0, 1) from the equation Lα2
k = (1− αk)γk + αkµ.

Set γk+1 = (1− αk)γk + αkµ.

b). Choose

yk =
αkγkvk + γk+1xk

γk + αkµ
.

Compute f(yk) and f ′(yk).

c). Set
xk+1 = yk − 1

L
f ′(yk),

vk+1 = 1
γk+1

[(1− αk)γkvk + αkµyk − αkf
′(yk)].

2

Let us demonstrate that this scheme can be rewritten in a simpler form.
Note that yk = 1

γk+αkµ
(αkγkvk + γk+1xk), xk+1 = yk − 1

L
f ′(yk) and

vk+1 =
1

γk+1

[(1− αk)γkvk + αkµyk − αkf
′(yk)].

Therefore

vk+1 = 1
γk+1

{ (1−αk)
αk

[(γk + αkµ)yk − γk+1xk] + αkµyk − αkf
′(yk)}

= 1
γk+1

{
(1−αk)γk

αk
yk + µyk

}
− 1−αk

αk
xk − αk

γk+1
f ′(yk)

= xk + 1
αk

(yk − xk)− 1
αkL

f ′(yk)

= xk + 1
αk

(xk+1 − xk).

Hence,
yk+1 = 1

γk+1+αk+1µ
(αk+1γk+1vk+1 + γk+2xk+1)

= xk+1 + αk+1γk+1(vk+1−xk+1)
γk+1+αk+1µ

= xk+1 + βk(xk+1 − xk).

where

βk =
αk+1γk+1(1− αk)

αk(γk+1 + αk+1µ)
.

Thus, we managed to get rid of {vk}. Let us do the same with γk. We have:

α2
kL = (1− αk)γk + µαk ≡ γk+1.
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Therefore
βk = αk+1γk+1(1−αk)

αk(γk+1+αk+1µ)
= αk+1γk+1(1−αk)

αk(γk+1+α2
k+1L−(1−αk+1)γk+1)

= γk+1(1−αk)
αk(γk+1+αk+1L)

= αk(1−αk)
α2

k
+αk+1

.

Note also that α2
k+1 = (1 − αk+1)α

2
k + qαk+1 with q = µ/L, and α2

0L = (1 − α0)γ0 + µα0.
The latter relation means that γ0 can be seen as a function of α0.

Thus, we can completely eliminate the sequence {γk}. Let us write out the resulting
scheme.

Constant Step Scheme, II (2.2.8)

0. Choose x0 ∈ Rn and α0 ∈ (0, 1). Set y0 = x0, q = µ/L.

1. kth iteration (k ≥ 0).

a). Compute f(yk) and f ′(yk). Set xk+1 = yk − 1
L
f ′(yk).

b). Compute αk+1 ∈ (0, 1) from the equation α2
k+1 = (1− αk+1)α

2
k + qαk+1, and set

βk =
αk(1− αk)

α2
k + αk+1

, yk+1 = xk+1 + βk(xk+1 − xk).

2

The rate of convergence of the above scheme can be derived from Theorem 2.2.1 and
Lemma 2.2.4. Let us write out the corresponding statement in terms of α0.

Theorem 2.2.3 If in (2.2.8) we take

α0 ≥
√

µ

L
, (2.2.9)

then

f(xk)− f ∗ ≤ min

{(
1−

√
µ

L

)k

,
4L

(2
√

L + k
√

γ0)2

} [
f(x0)− f ∗ +

γ0

2
‖ x0 − x∗ ‖2

]
,

where

γ0 =
α0(α0L− µ)

1− α0

.

Note that we don’t need to prove it since we did not change the initial scheme; we changed
the notation. In this theorem the condition (2.2.9) is equivalent to γ0 ≥ µ.

The scheme (2.2.8) becomes remarkably simple if we choose α0 =
√

µ
L

(this corresponds

to γ0 = µ). Then

αk =

√
µ

L
, βk =

√
L−√µ√
L +

√
µ

for all k ≥ 0. Thus, we come to the following process:
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0. Choose y0 = x0 ∈ Rn.

1. Set

xk+1 = yk − 1

L
f ′(yk), yk+1 = xk+1 +

√
L−√µ√
L +

√
µ

(xk+1 − xk). 2

However, note that this process does not work for µ = 0. The choice γ0 = L (which results
in the corresponding value of α0) is much more safe.

2.2.2 Convex sets

Let us try to understand now how we can solve a constrained minimization problem. Let us
start from the simplest problem of this type, the problem without functional constraints:

min
x∈Q

f(x),

where Q is some subset of Rn. Of course, we should impose some assumptions on the set
Q to make our problem tractable. For that let us answer the following question: What
should be a class of sets, which fits naturally the class of convex functions? If we look at the
following definition of convex function:

f(αx + (1− α)y) ≤ αf(x) + (1− α)f(y), ∀x, y ∈ Rn, α ∈ [0, 1],

we see that here we implicitly assume that we can check this inequality at any point of the
segment [x, y]:

[x, y] = {z = αx + (1− α)y, α ∈ [0, 1]}.
Thus, it would be natural to consider the sets, which contain all segment [x, y] provided that
the end points x and y belong to the set. Such sets are called convex.

Definition 2.2.2 A set Q is called convex if for any x, y ∈ Q and α ∈ [0, 1] we have:

αx + (1− α)y ∈ Q.

The point αx+(1−α)y with α ∈ [0, 1] is called the convex combination of these two points.
In fact, we have already met some convex sets in our course.

Lemma 2.2.5 If f(x) is a convex function, then for any α ∈ R its sublevel set

Lf (β) = {x ∈ Rn | f(x) ≤ β}
is either convex or empty.

Proof:
Indeed, let x and y belong to Lf (β). Then f(x) ≤ β and f(y) ≤ β. Therefore

f(αx + (1− α)y) ≤ αf(x) + (1− α)f(y) ≤ β.

2
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Lemma 2.2.6 Let f(x) be a convex function. Then its epigraph

Ef = {(x, τ) ∈ Rn+1 | f(x) ≤ τ}

is a convex set.

Proof:
Indeed, let z1 = (x1, τ1) ∈ Ef and z2 = (x2, τ2) ∈ Ef . Then for any α ∈ [0, 1] we have:

zα ≡ αz1 + (1− α)z2 = (αx1 + (1− α)x2, ατ1 + (1− α)τ2),

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2) ≤ ατ1 + (1− α)τ2.

Thus, zα ∈ Ef . 2

Let us look at some properties of convex sets.

Theorem 2.2.4 Let Q1 ⊆ Rn and Q2 ⊆ Rm be convex sets and A(x) be a linear operator:

A(x) = Ax + b : Rn → Rm.

Then all of the following sets are convex:

1. Intersection (m = n): Q1
⋂

Q2 = {x ∈ Rn | x ∈ Q1, x ∈ Q2}.
2. Sum (m = n): Q1 + Q2 = {z = x + y | x ∈ Q1, y ∈ Q2}.
3. Direct sum: Q1 ×Q2 = {(x, y) ∈ Rn+m | x ∈ Q1, y ∈ Q2}.
4. Conic hull: K(Q1) = {z ∈ Rn | z = βx, x ∈ Q1, β ≥ 0}.
5. Convex hull

Conv (Q1, Q2) = {z ∈ Rn | z = αx + (1− α)y, x ∈ Q1, y ∈ Q2, α ∈ [0, 1]}.

6. Affine image: A(Q1) = {y ∈ Rm | y = A(x), x ∈ Q1}.
7. Inverse affine image: A−1(Q2) = {x ∈ Rn | y = A(x), y ∈ Q2}.

Proof:
1. If x1 ∈ Q1

⋂
Q2, x1 ∈ Q1

⋂
Q2, then [x1, x2] ⊂ Q1 and [x1, x2] ⊂ Q2. Therefore [x1, x2] ⊂

Q1
⋂

Q2.
2. If z1 = x1 + x2, x1 ∈ Q1, x2 ∈ Q2 and z2 = y1 + y2, y1 ∈ Q1, y2 ∈ Q2, then

αz1 + (1− α)z2 = [αx1 + (1− α)y1]1 + [αx2 + (1− α)y2]2,

where [·]1 ∈ Q1 and [·]2 ∈ Q2.
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3. If z1 = (x1, x2), x1 ∈ Q1, x2 ∈ Q2 and z2 = (y1, y2), y1 ∈ Q1, y2 ∈ Q2, then

αz1 + (1− α)z2 = ([αx1 + (1− α)y1]1, [αx2 + (1− α)y2]2),

where [·]1 ∈ Q1 and [·]2 ∈ Q2.
4. If z1 = β1x1, x1 ∈ Q1, β1 ≥ 0, and z2 = β2x2, x2 ∈ Q1, β2 ≥ 0, then for any α ∈ [0, 1]

we have:

αz1 + (1− α)z2 = αβ1x1 + (1− α)β2x2 = γ(ᾱx1 + (1− ᾱ)x2),

where γ = αβ1 + (1− α)β2, and ᾱ = αβ1/γ ∈ [0, 1].
5. If z1 = β1x1 + (1 − β1)x2, x1 ∈ Q1, x2 ∈ Q2, β1 ∈ [0, 1], and z2 = β2y1 + (1 − β2)y2,

y1 ∈ Q1, y2 ∈ Q2, β2 ∈ [0, 1], then for any α ∈ [0, 1] we have:

αz1 + (1− α)z2 = α(β1x1 + (1− β1)x2) + (1− α)(β2y1 + (1− β2)y2)

= ᾱ(β̄1x1 + (1− β̄1)y1) + (1− ᾱ)(β̄2x2 + (1− β̄2)y2),

where ᾱ = αβ1 + (1− α)β2 and β̄1 = αβ1/ᾱ, β̄2 = α(1− β1)/(1− ᾱ).
6. If y1, y2 ∈ A(Q1) then y1 = Ax1 + b and y2 = Ax2 + b for some x1, x2 ∈ Q1. Therefore,

for y(α) = αy1 + (1− α)y2, 0 ≤ α ≤ 1, we have:

y(α) = α(Ax1 + b) + (1− α)(Ax2 + b) = A(αx1 + (1− α)x2) + b.

Thus, y(α) ∈ A(Q1).
7. If x1, x2 ∈ A−1(Q2) then y1 = Ax1 + b and y2 = Ax2 + b for some y1, y2 ∈ Q2.

Therefore, for x(α) = αx1 + (1− α)x2, 0 ≤ α ≤ 1, we have:

A(x(α)) = A(αx1 + (1− α)x2) + b

= α(Ax1 + b) + (1− α)(Ax2 + b) = αy1 + (1− α)y2 ∈ Q2.

2

Let us give several examples of convex sets.

Example 2.2.1 1. Half-space: {x ∈ Rn | 〈a, x〉 ≤ β} is convex since linear function is
convex.

2. Polytope: {x ∈ Rn | 〈ai, x〉 ≤ bi, i = 1, . . . , m} is convex as an intersection of convex
sets.

3. Ellipsoid. Let A = AT ≥ 0. Then the set {x ∈ Rn | 〈Ax, x〉 ≤ r2} is convex since the
function 〈Ax, x〉 is convex. 2
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Let us write out the optimality conditions for the problem

min
x∈Q

f(x), f ∈ F1(Rn), (2.2.10)

where Q is a closed convex set. It is clear, that our old condition f ′(x) = 0 does not work
here.

Example 2.2.2 Consider the following one-dimensional problem:

min
x≥0

x.

Here x ∈ R, Q = {x ≥ 0} and f(x) = x. Note that x∗ = 0 but f ′(x∗) = 1 > 0. 2

Theorem 2.2.5 Let f ∈ F1(Rn) and Q be a closed convex set. The point x∗ is a solution
of (2.2.10) if and only if

〈f ′(x∗), x− x∗〉 ≥ 0 (2.2.11)

for all x ∈ Q.

Proof:
Indeed, if (2.2.11) is true, then

f(x) ≥ f(x∗) + 〈f ′(x∗), x− x∗〉 ≥ f(x∗)

for all x ∈ Q.
Let x∗ be a solution to (2.2.10). Assume that there exists some x ∈ Q such that

〈f ′(x∗), x− x∗〉 < 0.

Consider the function φ(α) = f(x∗ + α(x− x∗)), α ∈ [0, 1]. Note that

φ(0) = f(x∗), φ′(0) = 〈f ′(x∗), x− x∗〉 < 0.

Therefore, for small enough α we have:

f(x∗ + α(x− x∗)) = φ(α) < φ(0) = f(x∗).

That is a contradiction. 2

Theorem 2.2.6 Let f ∈ S1
µ(Rn) and Q be a closed convex set. Then the solution x∗ of the

problem (2.2.10) exists and unique.
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Proof:
Let x0 ∈ Q. Consider the set Q̄ = {x ∈ Q | f(x) ≤ f(x0)}. Note that the problem (2.2.10)
is equivalent to the following:

min{f(x) | x ∈ Q̄}. (2.2.12)

However, Q̄ is bounded: for all x ∈ Q̄ we have

f(x0) ≥ f(x) ≥ f(x0) + 〈f ′(x0), x− x0〉+
µ

2
‖ x− x0 ‖2 .

Hence, ‖ x− x0 ‖≤ 2
µ
‖ f ′(x0) ‖.

Thus, the solution x∗ of (2.2.12) (≡ (2.2.10)) exists. Let us prove that it is unique.
Indeed, if x∗1 is also a solution to (2.2.10), then

f ∗ = f(x∗1) ≥ f(x∗) + 〈f ′(x∗), x∗1 − x∗〉+ µ
2
‖ x∗1 − x∗ ‖2

≥ f ∗ + µ
2
‖ x∗1 − x∗ ‖2

(we have used Theorem 2.2.5). Therefore x∗1 = x∗. 2

2.2.3 Gradient Mapping

Note that in the constrained minimization problem the gradient of the convex function should
be treated differently as compared with the unconstrained situation. In the previous section
we have already seen that its role in the optimality conditions is changing. Moreover, we
cannot use it anymore for the gradient step since the result could be infeasible, etc. If we
look at the main properties of the gradient we have used for f ∈ F1,1

L (Rn), we can see that
two of them are of the most importance. The first is that the gradient step decreases the
function value by an amount comparable with the norm of the gradient:

f(x− 1

L
f ′(x)) ≤ f(x)− 1

2L
‖ f ′(x) ‖2 .

And the second is the following inequality:

〈f ′(x), x− x∗〉 ≥ 1

L
‖ f ′(x) ‖2 .

It turns out, that for constrained minimization problems we can introduce an object,
which keeps the most important properties of the gradient.

Definition 2.2.3 Let us fix some γ > 0. Denote

xQ(x̄; γ) = arg min
x∈Q

[
f(x̄) + 〈f ′(x̄), x− x̄〉+ γ

2
‖ x− x̄ ‖2

]
,

gQ(x̄; γ) = γ(x̄− xQ(x̄; γ))

We call gQ(γ, x) the gradient mapping of f on Q.
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Note that for Q ≡ Rn we have

xQ(x̄; γ) = x̄− 1

γ
f ′(x̄), gQ(x̄; γ) = f ′(x̄).

Thus, the value 1
γ

can be seen as the step size for the “gradient” step x̄ → xQ(x̄; γ).
Note also that the gradient mapping is well-defined in view of Theorem 2.2.6. Moreover,

it is defined for all x̄ ∈ Rn, not necessarily from Q.
Let us fix out the main property of the gradient mapping.

Theorem 2.2.7 Let f ∈ S1,1
µ,L(Rn), γ ≥ L and x̄ ∈ Rn. Then for any x ∈ Q we have:

f(x) ≥ f(xQ(x̄; γ)) + 〈gQ(x̄; γ), x− x̄〉+
1

2γ
‖ gQ(x̄; γ) ‖2 +

µ

2
‖ x− x̄ ‖2 . (2.2.13)

Proof:
Denote xQ = xQ(γ, x̄), gQ = gQ(γ, x̄) and let

φ(x) = f(x̄) + 〈f ′(x̄), x− x̄〉+
γ

2
‖ x− x̄ ‖2 .

Then φ′(x) = f ′(x̄) + γ(x− x̄), and for any x ∈ Q we have:

〈f ′(x̄)− gQ, x− xQ〉 = 〈φ′(xQ), x− xQ〉 ≥ 0.

Hence,
f(x)− µ

2
‖ x− x̄ ‖2 ≥ f(x̄) + 〈f ′(x̄), x− x̄〉

= f(x̄) + 〈f ′(x̄), xQ − x̄〉+ 〈f ′(x̄), x− xQ〉

≥ f(x̄) + 〈f ′(x̄), xQ − x̄〉+ 〈gQ, x− xQ〉

= φ(xQ)− γ
2
‖ xQ − x̄ ‖2 +〈gQ, x− xQ〉

= φ(xQ)− 1
2γ
‖ gQ ‖2 +〈gQ, x− xQ〉

= φ(xQ) + 1
2γ
‖ gQ ‖2 +〈gQ, x− x̄〉

and φ(xQ) ≥ f(xQ) since γ ≥ L. 2

Corollary 2.2.1 Let f ∈ S1,1
µ,L(Rn), γ ≥ L and x̄ ∈ Rn. Then

f(xQ(x̄; γ)) ≤ f(x̄)− 1

2γ
‖ gQ(x̄; γ) ‖2, (2.2.14)

〈gQ(x̄; γ), x̄− x∗〉 ≥ 1

2γ
‖ gQ(x̄; γ) ‖2 +

µ

2
‖ x− x̄ ‖2 . (2.2.15)

Proof:
Indeed, using (2.2.13) with x = x̄, we get (2.2.14). Using (2.2.13) with x = x∗, we get
(2.2.15) since f(xQ(x̄; γ)) ≥ f(x∗). 2
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2.2.4 Minimization methods for simple sets

Let us demonstrate how we can use the gradient mapping for solving the following problem:

min
x∈Q

f(x),

where f ∈ S1,1
µ,L(Rn) and Q is a closed convex set. We assume that the set Q is simple

enough, so the gradient mapping can be computed explicitly. This assumption is valid for
the positive orthant, n dimensional box, Euclidean ball and some other sets.

As usual, let us start from the gradient method:

x0 ∈ Q,

xk+1 = xk − hgQ(xk; L), k = 0, . . . .
(2.2.16)

The efficiency analysis of this scheme is very similar to that of the unconstrained gradient
method. Let us give just an example of such reasoning.

Theorem 2.2.8 If we choose in (2.2.16) h = 1
L
, then

‖ xk − x∗ ‖2≤
(
1− µ

L

)k

‖ x0 − x∗ ‖2 .

Proof:
Denote rk =‖ xk − x∗ ‖, gQ = gQ(xk; L). Then, using inequality (2.2.15), we obtain:

r2
k+1 =‖ xk − x∗ − hgQ ‖2= r2

k − 2h〈gQ, xk − x∗〉+ h2 ‖ gQ ‖2

≤ (1− hµ)r2
k + h

(
h− 1

L

)
‖ gG ‖2=

(
1− µ

L

)
r2
k. 2

Note that for the step size h = 1
L

we have

xk+1 = xk − 1

L
gQ(xk; L) = xQ(xk; L).

Let us discuss now the schemes of the optimal methods. We give only the sketch of the
reasoning since it is very similar to that of Section 2.2.1.

First of all, we should define the estimate sequence. Assume that we have x0 ∈ Q. Define

φ0(x) = f(x0) + γ0

2
‖ x− x0 ‖2,

φk+1(x) = (1− αk)φk(x) + αk[f(xQ(yk; L)) + 1
2L
‖ gQ(yk; L) ‖2

+〈gQ(yk; L), x− yk〉+ µ
2
‖ x− yk ‖2].

Note that the form of the recursive rule for φk(x) is changing. The reason is that now we
have to use the inequality (2.2.13) instead of (2.1.9). However, this modification does not
change the analytical form of this rule and therefore we keep all the result of Section 2.2.1.
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Similarly, we can show that the estimate sequence {φ)k(x)} can be written as

φk(x) = φ∗k +
γk

2
‖ x− vk ‖2,

with the following recursive rules for γk, vk and φ∗k:

γk+1 = (1− αk)γk + αkµ,

vk+1 = 1
γk+1

[(1− αk)γkvk + αkµyk − αkgQ(yk; L)],

φ∗k+1 = (1− αk)φk + αkf(xQ(yk; L)) +
(

αk

2L
− α2

k

2γk+1

)
‖ gQ(yk; L) ‖2

+αk(1−αk)γk

γk+1

(
µ
2
‖ yk − vk ‖2 +〈gQ(yk; L), vk − yk〉

)
.

Further, assuming that φ∗k ≥ f(xk) and using the inequality

f(xk) ≥ f(xQ(yk; L)) + 〈gQ(yk; L), xk − yk〉

+ 1
2L
‖ gQ(yk; L) ‖2 +µ

2
‖ xk − yk ‖2],

we come to the following lower bound:

φ∗k+1 ≥ (1− αk)f(xk) + αkf(xQ(yk; L)) +
(

αk

2L
− α2

k

2γk+1

)
‖ gQ(yk; L) ‖2

+αk(1−αk)γk

γk+1
〈gQ(yk; L), vk − yk〉

≥ f(xQ(yk; L)) +
(

1
2L
− α2

k

2γk+1

)
‖ gQ(yk; L) ‖2

+(1− αk)〈gQ(yk; L), αkγk

γk+1
(vk − yk) + xk − yk〉.

Thus, again we can choose

xk+1 = xQ(yk; L),

Lα2
k = (1− αk)γk + αkµ ≡ γk+1,

yk = 1
γk+αkµ

(αkγkvk + γk+1xk).

Let us write out the corresponding variant of the scheme (2.2.8).

Constant Step Scheme, III (2.2.17)

0. Choose x0 ∈ Q and α0 ∈ (0, 1). Set y0 = x0, q = µ/L.
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1. kth iteration (k ≥ 0).

a). Compute f(yk) and f ′(yk). Set xk+1 = xQ(yk; L).

b). Compute αk+1 ∈ (0, 1) from the equation α2
k+1 = (1− αk+1)α

2
k + qαk+1 and set

βk =
αk(1− αk)

α2
k + αk+1

, yk+1 = xk+1 + βk(xk+1 − xk). 2

Clearly, this method has the rate of convergence described in Theorem 2.2.3. Note
that in this scheme only the points {xk} are feasible for Q. The sequence {yk} is used for
computation of the gradient mapping and we cannot guarantee its feasibility.

2.3 Minimization Problem with Smooth Components

(MiniMax Problem: Gradient Mapping, Gradient Method, Optimal Methods; Problem with
functional constraints; Methods for Constrained Minimization.)

2.3.1 MiniMax Problem

Very often the objective function of a minimization problem is composed with several com-
ponents. For example, the reliability of a complex system usually is defined as a minimal
reliability of its units. In Game Theory, the equilibrium state can be obtained as the mini-
mum of a function defined as the maximal utility function of the players. Moreover, even the
constrained minimization problem with the functional constraints provides us with a certain
example of the interaction of several nonlinear functions.

The simplest problem of that type is called the minimax problem. In this section we deal
with the smooth minimax problem:

min
x∈Q

[
f(x) = max

1≤i≤m
fi(x)

]
, (2.3.1)

where fi ∈ S1,1
µ,L(Rn), i = 1, . . . ,m and Q is a closed convex set. We call the function f(x)

the max-type function composed by the components fi(x). We write f ∈ S1,1
µ,L(Rn) if all the

components of function f belong to that class.
Note that, in general, f(x) is not differentiable. However, provided that all fi are differen-

tiable functions, we can introduce an object, which behaves exactly as a linear approximation
of a smooth function.

Definition 2.3.1 Let f be a max-type function:

f(x) = max
1≤i≤m

fi(x)

The function
f(x̄; x) = max

1≤i≤m
[fi(x̄) + 〈f ′i(x̄), x− x̄〉],

is called the linearization of f(x) at x̄.
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Compare, for example, the following result with inequalities (2.1.9) and (2.1.6).

Lemma 2.3.1 For any x ∈ Rn we have:

f(x) ≥ f(x̄; x) +
µ

2
‖ x− x̄ ‖2, (2.3.2)

f(x) ≤ f(x̄; x) +
L

2
‖ x− x̄ ‖2 . (2.3.3)

Proof:
Indeed,

fi(x) ≥ fi(x̄) + 〈f ′i(x̄), x− x̄〉+
µ

2
‖ x− x̄ ‖2

(see (2.1.9)). Taking the maximum of this inequality in i, we get (2.3.2).
For (2.3.3) we use inequality

fi(x) ≤ fi(x̄) + 〈f ′i(x̄), x− x̄〉+
L

2
‖ x− x̄ ‖2

(see (2.1.6)). 2

Let us write out the optimality conditions for problem (2.3.1) (compare with Theorem
2.2.5).

Theorem 2.3.1 A point x∗ ∈ Q is a solution to (2.3.1) if and only if for any x ∈ Q we
have:

f(x∗; x) ≥ f(x∗; x∗) = f(x∗). (2.3.4)

Proof:
Indeed, if (2.3.4) is true, then

f(x) ≥ f(x∗; x) ≥ f(x∗; x∗) = f(x∗)

for all x ∈ Q.
Let x∗ be a solution to (2.3.1). Assume that there exists x ∈ Q such that f(x∗; x) < f(x∗).

Consider the functions

φi(α) = fi(x
∗ + α(x− x∗)), α ∈ [0, 1].

Note that for all i, 1 ≤ i ≤ m, we have:

fi(x
∗) + 〈f ′i(x∗), x− x∗〉 < f(x∗) = max

1≤i≤m
fi(x

∗).

Therefore either φi(0) ≡ fi(x
∗) < f(x∗), or

φi(0) = f(x∗), φ′i(0) = 〈f ′i(x∗), x− x∗〉 < 0.

Therefore, for small enough α we have:

fi(x
∗ + α(x− x∗)) = φi(α) < f(x∗)

for all i, 1 ≤ i ≤ m. That is a contradiction. 2
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Corollary 2.3.1 Let x∗ be a minimum of a max-type function f(x) on the set Q. If f
belongs to S1

µ(Rn), then

f(x) ≥ f(x∗) +
µ

2
‖ x− x∗ ‖2

for all x ∈ Q.

Proof:
Indeed, in view of (2.3.2) and Theorem 2.3.1, for any x ∈ Q we have:

f(x) ≥ f(x∗; x) +
µ

2
‖ x− x∗ ‖2≥ f(x∗; x∗) +

µ

2
‖ x− x∗ ‖2= f(x∗) +

µ

2
‖ x− x∗ ‖2 .

2

Finally, let us prove the existence theorem.

Theorem 2.3.2 Let a max-type function f(x) belong to S1
µ(Rn), µ > 0, and Q be a closed

convex set. Then the solution x∗ of the problem (2.3.1) exists and unique.

Proof:
Let x̄ ∈ Q. Consider the set Q̄ = {x ∈ Q | f(x) ≤ f(x̄)}. Note that the problem (2.3.1) is
equivalent to the following:

min{f(x) | x ∈ Q̄}. (2.3.5)

But Q̄ is bounded: for any x ∈ Q̄ we have:

f(x̄) ≥ fi(x) ≥ fi(x̄) + 〈f ′i(x̄), x− x̄〉+
µ

2
‖ x− x̄ ‖2 .

Hence,
µ

2
‖ x− x̄ ‖2≤‖ f ′(x̄) ‖ · ‖ x− x̄ ‖ +f(x̄)− fi(x̄).

Thus, the solution x∗ of (2.3.5) (and, consequently, (2.3.1)) exists.
If x∗1 is also a solution to (2.3.1), then

f(x∗) = f(x∗1) ≥ f(x∗; x∗1) +
µ

2
‖ x∗1 − x∗ ‖2≥ f(x∗) +

µ

2
‖ x∗1 − x∗ ‖2

(we have used (2.3.2)). Therefore x∗1 = x∗. 2

2.3.2 Gradient Mapping

In Section 2.2.3 we have introduced a notion of gradient mapping, replacing the gradient for
the constrained minimization problem without functional constraints. Since the linearization
of a max-type function behaves similarly to the linearization of a smooth function, we can
try to adapt the notion of the gradient mapping to our concrete situation.

Let us fix some γ > 0 and x̄ ∈ Rn. Consider a max-type function f(x). Denote

fγ(x̄; x) = f(x̄; x) +
γ

2
‖ x− x̄ ‖2 .

The following definition is an extension of Definition 2.2.3.
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Definition 2.3.2 Define
f ∗(x̄; γ) = min

x∈Q
fγ(x̄; x),

xf (x̄; γ) = arg min
x∈Q

fγ(x̄; x),

gf (x̄; γ) = γ(x̄− xf (x̄; γ)).

We call gf (x; γ) the gradient mapping of the max-type function f on Q.

Note that for m = 1 this definition is equivalent to Definition 2.2.3. Similarly, the
linearization point x̄ does not necessarily belong to Q.

It is clear that the function fγ(x̄; x) is a max-type function composed with the components

fi(x̄) + 〈f ′i(x̄), x− x̄〉+
γ

2
‖ x− x̄ ‖2∈ S1,1

γ,γ(R
n), i = 0, . . . , m.

Therefore the gradient mapping is well-defined in view of Theorem 2.3.2.
Let us prove the main result of this section, which highlights the similarity between

the properties of the gradient mapping and the properties of the gradient (compare with
Theorem 2.2.7).

Theorem 2.3.3 Let f ∈ S1,1
µ,L(Rn). Then for all x ∈ Q we have:

f(x̄; x) ≥ f ∗(x̄; γ) + 〈gf (x̄; γ), x− x̄〉+
1

2γ
‖ gf (x̄; γ) ‖2 . (2.3.6)

Proof:
Denote xf = xf (x̄; γ), gf = gf (x̄; γ). It is clear that fγ(x̄; x) ∈ S1,1

γ,γ(R
n) and it is a max-type

function. Therefore all results of the previous section can be applied also to fγ.
Since xf = arg min

x∈Q
fγ(x̄; x), in view of Corollary 2.3.1 and Theorem 2.3.1 we have:

f(x̄; x) = fγ(x̄; x)− γ
2
‖ x− x̄ ‖2

≥ fγ(x̄; xf ) + γ
2
(‖ x− xf ‖2 − ‖ x− x̄ ‖2)

≥ f ∗(x̄; γ) + γ
2
〈x̄− xf , 2x− xf − x̄〉

= f ∗(x̄; γ) + γ
2
〈x̄− xf , 2(x− x̄) + x̄− xf〉

= f ∗(x̄; γ) + 〈gf , x− x̄〉+ 1
2γ
‖ gf ‖2 .

2

In what follows we often refer to the following corollary of the above theorem.



88 CHAPTER 2. SMOOTH CONVEX PROGRAMMING

Corollary 2.3.2 Let f ∈ S1,1
µ,L(Rn) and γ ≥ L. Then:

1. For any x ∈ Q and x̄ ∈ Rn we have:

f(x) ≥ f(xf (x̄; γ)) + 〈gf (x̄; γ), x− x̄〉+
1

2γ
‖ gf (x̄; γ) ‖2 +

µ

2
‖ x− x̄ ‖2 . (2.3.7)

2. If x̄ ∈ Q then

f(xf (x̄; γ)) ≤ f(x̄)− 1

2γ
‖ gf (x̄; γ) ‖2, (2.3.8)

3. For any x̄ ∈ Rn we have:

〈gf (x̄; γ), x̄− x∗〉 ≥ 1

2γ
‖ gf (x̄; γ) ‖2 +

µ

2
‖ x∗ − x̄ ‖2 . (2.3.9)

Proof:
Assumption γ ≥ L implies that f ∗(x̄; γ) ≥ f(xf (x̄; γ)). Therefore (2.3.7) follows from (2.3.6)
since

f(x) ≥ f(x̄; x) +
µ

2
‖ x− x̄ ‖2

for all x ∈ Rn (see Lemma 2.3.1).
Using (2.3.7) with x = x̄, we get (2.3.8), and using (2.3.7) with x = x∗, we get (2.3.9)

since f(xf (x̄; γ))− f(x∗) ≥ 0. 2

Finally, let us estimate the variation of f ∗(x̄; γ) as a function of γ.

Lemma 2.3.2 For any γ1, γ2 > 0 and x̄ ∈ Rn we have:

f ∗(x̄; γ2) ≥ f ∗(x̄; γ1) +
γ2 − γ1

2γ1γ2

‖ gf (x̄; γ1) ‖2 .

Proof:
Denote xi = xf (x̄; γi), gi = gf (x̄; γi), i = 1, 2. In view of (2.3.6), we have:

f(x̄; x) +
γ2

2
‖ x− x̄ ‖2≥ f ∗(x̄; γ1) + 〈g1, x− x̄〉+

1

2γ1

‖ g1 ‖2 +
γ2

2
‖ x− x̄ ‖2 (2.3.10)

for all x ∈ Q. In particular, for x = x2 we obtain:

f ∗(x̄; γ2) = f(x̄; x2) + γ2

2
‖ x2 − x̄ ‖2

≥ f ∗(x̄; γ1) + 〈g1, x2 − x̄〉+ 1
2γ1

‖ g1 ‖2 +γ2

2
‖ x2 − x̄ ‖2

= f ∗(x̄; γ1) + 1
2γ1

‖ g1 ‖2 − 1
γ2
〈g1, g2〉+ 1

2γ2
‖ g2 ‖2

≥ f ∗(x̄; γ1) + 1
2γ1

‖ g1 ‖2 − 1
2γ2

‖ g1 ‖2 .

2
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2.3.3 Minimization methods for minimax problem

As usual, we start the presentation of numerical methods for problem (2.3.1) from the
“gradient” method with constant step

0. Choose x0 ∈ Q, h > 0.

1. Iterate xk+1 = xk − hgf (xk; L), k ≥ 0.
(2.3.11)

Theorem 2.3.4 If we choose h ≤ 1
L
, then

‖ xk − x∗ ‖2≤ (1− µh)k ‖ x0 − x∗ ‖2 .

Proof:
Denote rk =‖ xk − x∗ ‖, g = gf (xk; L). Then, in view of (2.3.9) we have:

r2
k+1 =‖ xk − x∗ − hgQ ‖2= r2

k − 2h〈g, xk − x∗〉+ h2 ‖ g ‖2

≤ (1− hµ)r2
k + h

(
h− 1

L

)
‖ g ‖2≤ (1− µh)r2

k.

2

Note that with h = 1
L

we have

xk+1 = xk − 1

L
gf (xk; L) = xf (xk; L).

For this step size the rate of convergence of the scheme (2.3.11) is as follows:

‖ xk − x∗ ‖2≤
(
1− µ

L

)k

‖ x0 − x∗ ‖2 .

Comparing this result with Theorem 2.2.8, we see that for the minimax problem the gradient
method has the same rate of convergence, as it has in the smooth case.

Let us check, what is the situation with the optimal methods. Recall, that in order
to develop the scheme of optimal methods, we need to introduce an estimate sequence with
some recursive updating rules. Formally, the minimax problem differs from the unconstrained
minimization problem only in the form of the lower approximation of the objective function.
In the unconstrained minimization case we used the inequality (2.1.9) for updating the
estimate sequence, and now we have to use inequality (2.3.7).

Let us introduce the estimate sequence for problem (2.3.1) as follows. Let us fix some
x0 ∈ Q and γ0 > 0. Consider the sequences {yk} ⊂ Rn and {αk} ⊂ (0, 1). Define

φ0(x) = f(x0) + γ0

2
‖ x− x0 ‖2,

φk+1(x) = (1− αk)φk(x)

+αk[ f(xf (yk; L)) + 1
2L
‖ gf (yk; L) ‖2 + 〈gf (yk; L), x− yk〉+ µ

2
‖ x− yk ‖2].
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Comparing these relations with (2.2.3), we can see the difference only in the constant term
(it is in the frame); in (2.2.3) it was f(yk) on that place. This difference leads to the trivial
modification in the results of Lemma 2.2.3: All inclusions of f(yk) must be formally replaced
by the expression in the frame, and f ′(yk) must be replaced by gf (yk; L). Thus, we come to
the following lemma.

Lemma 2.3.3 For all k ≥ 0 we have

φk(x) ≡ φ∗k +
γk

2
‖ x− vk ‖2,

where the sequences {γk}, {vk} and {φ∗k} are defined as follows: v0 = x0, φ∗0 = f(x0) and

γk+1 = (1− αk)γk + αkµ,

vk+1 = 1
γk+1

[(1− αk)γkvk + αkµyk − αkgf (yk; L)],

φ∗k+1 = (1− αk)φk + αk(f(xf (yk; L)) + 1
2L
‖ gf (yk; L) ‖2) +

α2
k

2γk+1
‖ gf (yk; L) ‖2

+αk(1−αk)γk

γk+1

(
µ
2
‖ yk − vk ‖2 +〈gf (yk; L), vk − yk〉

)
.

2

Now we can proceed exactly as in Section 2.2. Assume that φ∗k ≥ f(xk). Then, using the
inequality (2.3.7) with x = xk and x̄ = yk, namely,

f(xk) ≥ f(xf (yk; L)) + 〈gf (yk; L), xk − yk〉+
1

2L
‖ gf (yk; L) ‖2 +

µ

2
‖ xk − yk ‖2],

we come to the following lower bound:

φ∗k+1 ≥ (1− αk)f(xk) + αkf(xf (yk; L))

+
(

αk

2L
− α2

k

2γk+1

)
‖ gf (yk; L) ‖2 +αk(1−αk)γk

γk+1
〈gf (yk; L), vk − yk〉

≥ f(xf (yk; L)) +
(

1
2L
− α2

k

2γk+1

)
‖ gf (yk; L) ‖2

+(1− αk)〈gf (yk; L), αkγk

γk+1
(vk − yk) + xk − yk〉.

Thus, again we can choose

xk+1 = xf (yk; L),

Lα2
k = (1− αk)γk + αkµ ≡ γk+1,

yk = 1
γk+αkµ

(αkγkvk + γk+1xk).
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Let us write out the resulting scheme in the form of (2.2.8), with eliminated {vk} and
{γk}.

Constant Step Scheme for Minimax (2.3.12)

0. Choose x0 ∈ Q and α0 ∈ (0, 1). Set y0 = x0, q = µ/L.

1. kth iteration (k ≥ 0).

a). Compute {fi(yk)} and {f ′i(yk)}. Set xk+1 = xf (yk; L).

b). Compute αk+1 ∈ (0, 1) from the equation

α2
k+1 = (1− αk+1)α

2
k + qαk+1,

and set

βk =
αk(1− αk)

α2
k + αk+1

, yk+1 = xk+1 + βk(xk+1 − xk).

2

The convergence analysis of this scheme is completely identical to that of scheme (2.2.8).
Let us just fix the result.

Theorem 2.3.5 Let the max-type function f belong to S1,1
µ,L(Rn). If in (2.3.12) we take

α0 ≥
√

µ
L
, then

f(xk)− f ∗ ≤
[
f(x0)− f ∗ +

γ0

2
‖ x0 − x∗ ‖2

]
×min

{(
1−

√
µ

L

)k

,
4L

(2
√

L + k
√

γ0)2

}
,

where γ0 = α0(α0L−µ)
1−α0

.

2

Note that the scheme (2.3.12) works for all µ ≥ 0. Let us write out the method for
solving (2.3.1) with strictly convex components.

Scheme for f ∈ S1,1
µ,L(Rn) (2.3.13)

0. Choose x0 ∈ Q. Set y0 = x0, β =
√

L−√µ√
L+

√
µ
.

1. kth iteration (k ≥ 0). Compute {fi(yk)} and {f ′i(yk)}. Set

xk+1 = xf (yk; L), yk+1 = xk+1 + β(xk+1 − xk).

2
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Theorem 2.3.6 For this scheme we have:

f(xk)− f ∗ ≤ 2
(
1−

√
µ

L

)k

(f(x0)− f ∗). (2.3.14)

Proof:
Scheme (2.3.13) corresponds to α0 =

√
µ
L
. Then γ0 = µ and we get (2.3.14) since f(x0) ≥

f ∗ + µ
2
‖ x0 − x∗ ‖2 in view of Corollary 2.3.1. 2

To conclude this section, let us look at the auxiliary problem we need to solve to compute
the gradient mapping for minimax problem. Recall, that this problem is as follows:

min
x∈Q

{ max
1≤i≤m

[fi(x0) + 〈f ′i(x0), x− x0〉] +
γ

2
‖ x− x0 ‖2}.

Introducing the additional variables t ∈ Rm, we can rewrite this problem in the following
way:

min { m∑
i=1

t(i) + γ
2
‖ x− x0 ‖2}

s. t. fi(x0) + 〈f ′i(x0), x− x0〉 ≤ t(i), i = 1, . . . , m,

x ∈ Q, t ∈ Rm,

(2.3.15)

Note that if Q is a polytope then the problem (2.3.15) is a Quadratic Programming Prob-
lem. This problem can be solved by some special finite methods (Simplex-type algorithms).
It can be also solved by Interior Point Methods. In the latter case, we can treat much more
complicated structure of the set Q.

2.3.4 Optimization with Functional Constraints

Let us demonstrate that the methods, described in the previous section, can be used for
solving the constrained minimization problem with smooth functional constraints. Recall,
that the analytical form of this problem is as follows:

min f0(x),

s.t. fi(x) ≤ 0, i = 1, . . . ,m,

x ∈ Q,

(2.3.16)

where the functions fi are convex and smooth and Q is a closed convex set. In this section
we assume that fi ∈ S1,1

µ,L(Rn), i = 0, . . . , m, with some µ > 0.
The relation between the problem (2.3.16) and the minimax problems is established by

some special function of one variable. Consider the parametric max-type function

f(t; x) = max{f0(x)− t; fi(x), i = 1 . . . m}.
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Let us introduce the function
f ∗(t) = min

x∈Q
f(t; x). (2.3.17)

Note that the components of the max-type function f(t; ·) are strongly convex in x. There-
fore, for any t ∈ R1 the solution of the problem (2.3.17), x∗(t), exists and unique in view of
Theorem 2.3.2.

We will try to get close to the solution of (2.3.16) using a process based on the approximate
values of the function f ∗(t). The approach we use sometimes is called Sequential Quadratic
Programming. It can be applied also to nonconvex problems.

In order to proceed, we need to establish some properties of function f ∗(t).

Lemma 2.3.4 Let t∗ be the optimal value of the problem (2.3.16). Then

f ∗(t) ≤ 0 for all t ≥ t∗,

f ∗(t) > 0 for all t < t∗.

Proof:
Let x∗ be the solution to (2.3.16). If t ≥ t∗ then

f ∗(t) ≤ f(t; x∗) = max{f0(x
∗)− t; fi(x

∗)} ≤ max{t∗ − t; fi(x
∗)} ≤ 0.

Suppose that t < t∗ and f ∗(t) ≤ 0. Then there exists y ∈ Q such that

f0(y) ≤ t < t∗, fi(y) ≤ 0, i = 1, . . . ,m.

Thus, t∗ cannot be the optimal value of (2.3.16). 2

Thus, we see that the smallest root of the function f ∗(t) corresponds to the optimal value
of the problem (2.3.16). Note also, that using the methods of the previous section, we can
compute an approximate value of function f ∗(t). Hence, our goal is to form a process of
finding the root, based on that information. However, for that we need some more properties
of the function f ∗(t).

Lemma 2.3.5 For any ∆ ≥ 0 we have:

f ∗(t)−∆ ≤ f ∗(t + ∆) ≤ f ∗(t).

Proof:
Indeed,

f ∗(t + ∆) = min
x∈Q

max
1≤i≤m

{f0(x)− t−∆; fi(x)}

≤ min
x∈Q

max
1≤i≤m

{f0(x)− t; fi(x)} = f ∗(t),

f ∗(t + ∆) = min
x∈Q

max
1≤i≤m

{f0(x)− t; fi(x) + ∆} −∆

≥ min
x∈Q

max
1≤i≤m

{f0(x)− t; fi(x)} −∆ = f ∗(t)−∆. 2
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Thus, we have proved that the function f ∗(t) decreases in t and it is Lipshitz continuous
with the constant equal to one.

Lemma 2.3.6 For any t1 < t2 and ∆ ≥ 0 we have

f ∗(t1 −∆) ≥ f ∗(t1) + ∆
f ∗(t1)− f ∗(t2)

t2 − t1
. (2.3.18)

Proof:
Denote t0 = t1 −∆, α = ∆

t2−t0
≡ ∆

t2−t1+∆
∈ [0, 1]. Then t1 = (1− α)t0 + αt2 and (2.3.18) can

be written as

f ∗(t1) ≤ (1− α)f ∗(t0) + αf ∗(t2). (2.3.19)

Let xα = (1− α)x∗(t0) + αx∗(t2). We have:

f ∗(t1) ≤ max
1≤i≤m

{f0(xα)− t1; fi(xα)}

≤ max
1≤i≤m

{(1− α)(f0(x
∗(t0))− t0) + α(f0(x

∗(t2))− t2); (1− α)fi(x
∗(t0)) + αfi(x

∗(t2))}

≤ (1− α) max
1≤i≤m

{f0(x
∗(t0))− t0; fi(x

∗(t0))}+ α max
1≤i≤m

{f0(x
∗(t2))− t2; fi(x

∗(t2))}

= (1− α)f ∗(t0) + αf ∗(t2),

and we get (2.3.18). 2

Note that Lemmas 2.3.5 and 2.3.6 are valid for any parametric max-type functions, not
necessarily formed by the functional components of the problem (2.3.16).

Let us study now the properties of the gradient mapping for the parametric max-type
functions. To do that, let us introduce first the linearization of the parametric max-type
function f(t; x):

f(t; x̄; x) = max
1≤i≤m

{f0(x̄) + 〈f ′0(x̄), x− x̄〉 − t; fi(x̄) + 〈f ′i(x̄), x− x̄〉}

Now we can introduce the gradient mapping in a standard way. Let us fix γ > 0. Denote

fγ(t; x̄; x) = f(t; x̄; x) + γ
2
‖ x− x̄ ‖2,

f ∗(t; x̄; γ) = min
x∈Q

fγ(t; x̄; x)

xf (t; x̄; γ) = arg min
x∈Q

fγ(t; x̄; x)

gf (t; x̄; γ) = γ(x̄− xf (t; x̄; γ)).
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We call gf (t; x̄; γ) the constrained gradient mapping of the problem (2.3.16). As usual, the
linearization point x̄ is not necessarily feasible for the set Q.

Note that the function fγ(t; x̄; x) is itself a max-type function composed with the com-
ponents

f0(x̄) + 〈f ′0(x̄), x− x̄〉 − t + γ
2
‖ x− x̄ ‖2,

fi(x̄) + 〈f ′i(x̄), x− x̄〉 − t + γ
2
‖ x− x̄ ‖2, i = 1, . . . , m.

Moreover, fγ(t; x̄; x) ∈ S1,1
γ,γ(R

n). Therefore, for any t ∈ R1 the constrained gradient mapping
is well-defined in view of Theorem 2.3.2..

Since f(t; x) ∈ S1,1
µ,L(Rn), we have:

fµ(t; x̄; x) ≤ f(t; x) ≤ fL(t; x̄; x)

for all x ∈ Rn. Therefore f ∗(t; x̄; µ) ≤ f ∗(t) ≤ f ∗(t; x̄; L). Moreover, using Lemma 2.3.6, we
obtain the following result:

For any x̄ ∈ Rn, γ > 0, ∆ ≥ 0 and t1 < t2 and we have

f ∗(t1 −∆; x̄; γ) ≥ f ∗(t1; x̄; γ) +
∆

t2 − t1
(f ∗(t1; x̄; γ)− f ∗(t2; x̄; γ)). (2.3.20)

There are two values of γ, which are of the most importance for us now. These are γ = L
and γ = µ. Applying Lemma 2.3.2 to the max-type function fγ(t; x̄; x) with γ1 = L and
γ2 = µ, we obtain the following inequality:

f ∗(t; x̄; µ) ≥ f ∗(t; x̄; L)− L− µ

2µL
‖ gf (t; x̄; L) ‖2 . (2.3.21)

Since we are interested in finding the root of the function f ∗(t), let us describe the
behavior of the roots of the function f ∗(t; x̄; γ), which can be seen as an approximation of
f ∗(t).

Denote

t∗(x̄, t) = root t(f
∗(t; x̄; µ))

(notation root t(·) means the root in t of the function (·)).

Lemma 2.3.7 Let x̄ ∈ Rn and t̄ < t∗ are such that

f ∗(t̄; x̄; µ) ≥ (1− κ)f ∗(t̄; x̄; L)

for some κ ∈ (0, 1). Then t̄ < t∗(x̄, t̄) ≤ t∗. Moreover, for any t < t̄ and x ∈ Rn we have:

f ∗(t; x; L) ≥ 2(1− κ)f ∗(t̄; x̄; L)

√√√√ t̄− t

t∗(x̄, t̄)− t̄
.
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Proof:
Since t̄ < t∗, we have:

0 < f ∗(t̄) ≤ f ∗(t̄; x̄; L) ≤ 1

1− κ
f ∗(t̄; x̄; µ).

Thus, f ∗(t̄; x̄; µ) > 0 and therefore t∗(x̄, t̄) > t̄ since f ∗(t; x̄; µ) decreases in t.
Denote ∆ = t̄− t. Then, in view of (2.3.20), we have:

f ∗(t; x; L) ≥ f ∗(t) ≥ f ∗(t̄; x̄; µ) ≥ f ∗(t̄; x̄; µ) + ∆
t∗(x̄,t̄)−t̄

f ∗(t̄; x̄; µ)

≥ (1− κ)
(
1 + ∆

t∗(x̄,t̄)−t̄

)
f ∗(t̄; x̄; L) ≥ 2(1− κ)f ∗(t̄; x̄; L)

√
∆

t∗(x̄,t̄)−t̄

2

2.3.5 Constrained minimization process

Now we are completely ready to analyze the following minimization process.

Constrained Minimization Scheme (2.3.22)

0. Choose x0 ∈ Q and t0 < t∗. Choose κ ∈ (0, 1
2
) and the accuracy ε > 0.

1. kth iteration (k ≥ 0).

a). Generate the sequence {xk,j} by the minimax method (2.3.13) as applied to the
max-type function f(tk; x) with the starting point xk,0 = xk. If

f ∗(tk; xk,j; µ) ≥ (1− κ)f ∗(tk; xk,j; L)

then stop the internal process and set j(k) = j,

j∗(k) = arg min
0≤j≤j(k)

f ∗(tk; xk,j; L),

xk+1 = xf (tk; xk,j∗(k); L).

Global Stop: Terminate the whole process if at some iteration of the internal scheme
we have f ∗(tk; xk,j; L) ≤ ε.

b). Set tk+1 = t∗(xk,j(k), tk). 2

This is the first time in our course we meet a two-level process. Clearly, its analysis is
rather complicated. First, we need to estimate the rate of convergence of the upper-level
process in (2.3.22) (it is called the master process). Second, we need to estimate the total
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complexity of the internal processes in Step 1a). Since we are interested in the analytical
complexity of this method, the arithmetical cost of computation of t∗(x, t) and f ∗(t; x, γ)
is not important for us now. Anyway, they can be derived from the estimates for the total
number of calls of the oracle of the problem (2.3.16).

Let us describe first the convergence of the master process.

Lemma 2.3.8

f ∗(tk; xk+1; L) ≤ t0 − t∗

1− κ

[
1

2(1− κ)

]k

.

Proof:
Denote β = 1

2(1−κ)
(< 1) and

δk =
f ∗(tk; xk,j(k); L)√

tk+1 − tk
.

Since tk+1 = t∗(xk,j(k), tk), in view of Lemma 2.3.7 for k ≥ 1 we have:

2(1− κ)
f ∗(tk; xk,j(k); L)√

tk+1 − tk
≤ f ∗(tk−1; xk−1,j(k−1); L))√

tk − tk−1

.

Thus, δk ≤ βδk−1 and we obtain

f ∗(tk; xk,j(k); L) = δk

√
tk+1 − tk ≤ βkδ0

√
tk+1 − tk

= βkf ∗(t0; x0,j(0); L)
√

tk+1−tk
t1−t0

.

Further, in view of Lemma 2.3.5, we have t1 − t0 ≥ f ∗(t0; x0,j(0); µ). Therefore

f ∗(tk; xk,j(k); L) ≤ βkf ∗(t0; x0,j(0); L)
√

tk+1−tk
f∗(t0;x0,j(0);µ)

≤ βk

1−κ

√
f ∗(t0; x0,j(0); µ)(tk+1 − tk) ≤ βk

1−κ

√
f ∗(t0)(t0 − t∗).

It remains to note that f ∗(t0) ≤ t0 − t∗ (Lemma 2.3.5) and

f ∗(tk; xk+1; L) ≡ f ∗(tk; xk,j∗(k); L) ≤ f ∗(tk; xk,j(k); L).

2

The above result provides us with some estimate for the number of the upper-level
iterations, which is necessary to find an ε-solution of the problem (2.3.16). Indeed, let
f ∗(tk; xk,j; L) ≤ ε. Then for x∗ = xf (tk; xk,j; L) we have:

f(tk; x∗) = max
1≤i≤m

{f0(x∗)− tk; fi(x∗)} ≤ f ∗(tk; xk,j; L) ≤ ε.
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Since tk ≤ t∗, we conclude that

f0(x∗) ≤ t∗ + ε,

fi(x∗) ≤ ε, i = 1, . . . , m.
(2.3.23)

In view of Lemma 2.3.8, we can get (2.3.23) at most in

N(ε) =
1

ln[2(1− κ)]
ln

t0 − t∗

(1− κ)ε
(2.3.24)

full iterations of the master process (the last iteration of the process, in general, is not full
since it is terminated by the Global Stop rule). Note that in this estimate κ is an absolute
constant (for example, κ = 1

4
).

Let us analyze the complexity of the internal process. Let the sequence {xk,j} be gener-
ated by (2.3.13) with the starting point xk,0 = xk. In view of Theorem 2.3.6, we have:

f(tk; xk,j)− f ∗(tk) ≤ 2
(
1−

√
µ
L

)j
(f(tk; xk)− f ∗(tk))

≤ 2e−σ·j(f(tk; xk)− f ∗(tk)) ≤ 2e−σ·jf(tk; xk),

where σ =
√

µ
L
.

Denote by N the number of full iterations of the process (2.3.22) (N ≤ N(ε)). Thus,
j(k) is defined for all k, 0 ≤ k ≤ N . Note that tk = t∗(xk−1,j(k−1), tk−1) > tk−1. Therefore

f(tk; xk) ≤ f(tk−1; xk) ≤ f ∗(tk−1; xk−1,j∗(k−1), L)

Denote

∆k = f ∗(tk−1; xk−1,j∗(k−1), L), k ≥ 1, ∆0 = f(t0; x0).

Then, for all k ≥ 0 we have:

f(tk; xk)− f ∗(tk) ≤ ∆k.

Lemma 2.3.9 For all k, 0 ≤ k ≤ N , the internal process works no longer as the following
condition is satisfied:

f(tk; xk,j)− f ∗(tk) ≤ µκ

L− µ
· f ∗(tk; xk,j; L). (2.3.25)

Proof:

Assume that (2.3.25) is satisfied. Then, in view of (2.3.8), we have:

1

2L
‖ gf (tk; xk,j; L ‖2≤ f(tk; xk,j)− f(tk; xf (tk; xk,j; L)) ≤ f(tk; xk,j)− f ∗(tk).
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Therefore, using (2.3.21), we obtain:

f ∗(tk; xk,j; µ) ≥ f ∗(tk; xk,j; L)− L−µ
2µL

‖ gf (tk; xk,j; L ‖2

≥ f ∗(tk; xk,j; L)− L−µ
µ

(f(tk; xk,j)− f ∗(tk))

≥ (1− κ)f ∗(tk; xk,j; L).

And that is the termination criterion of the internal process in Step 1a) in (2.3.22). 2

The above result, combined with the estimate of the rate of convergence for the inter-
nal process, provide us with the total complexity estimate of the constrained minimization
scheme.

Lemma 2.3.10 For all k, 0 ≤ k ≤ N , we have:

j(k) ≤ 1 +

√
L

µ
· ln 2(L− µ)∆k

κµ∆k+1

.

Proof:
Assume that

j(k)− 1 >
1

σ
ln

2(L− µ)∆k

κµ∆k+1

,

where σ =
√

µ
L
. Recall that ∆k+1 = min

0≤j≤j(k)
f ∗(tk; xk,j; L). Note that the stopping criterion

of the internal process did not work for j = j(k)− 1. Therefore, in view of Lemma 2.3.9, we
have:

f ∗(tk; xk,j; L) ≤ L− µ

µκ
(f(tk; xk,j)− f ∗(tk)) ≤ 2

L− µ

µκ
e−σ·j∆k < ∆k+1.

That is a contradiction to definition of ∆k+1. 2

Corollary 2.3.3

N∑
k=0

j(k) ≤ (N + 1)
[
1 +

√
L
µ
· ln 2(L−µ)

κµ

]
+

√
L
µ
· ln ∆0

∆N+1
.

2

It remains to estimate the number of internal iterations in the last step of the master
process. Denote this number by j∗.

Lemma 2.3.11

j∗ ≤ 1 +

√
L

µ
· ln 2(L− µ)∆N+1

κµε
.
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Proof:
The proof is very similar to that of Lemma 2.3.10. Suppose that

j∗ − 1 >

√
L

µ
· ln 2(L− µ)∆N+1

κµε

Note that for j = j∗ − 1 we have:

ε ≤ f ∗(tN+1; xN+1,j; L) ≤ L− µ

µκ
(f(tN+1; xN+1,j)− f ∗(tN+1)) ≤ 2

L− µ

µκ
e−σ·j∆N+1 < ε.

That is a contradiction. 2

Corollary 2.3.4

j∗ +
N∑

k=0

j(k) ≤ (N + 2)

[
1 +

√
L

µ
· ln 2(L− µ)

κµ

]
+

√
L

µ
· ln ∆0

ε
.

Let us put all things together. Substituting the estimate (2.3.24) for the number of full
iterations N into the estimate of Corollary 2.3.4, we come to the following bound for the
total number of the internal iterations in the process (2.3.22):

[
1

ln[2(1−κ)]
ln t0−t∗

(1−κ)ε
+ 2

]
·
[
1 +

√
L
µ
· ln 2(L−µ)

κµ

]

+
√

L
µ
· ln

(
1
ε
· max

1≤i≤m
{f0(x0)− t0; fi(x0)}

)
.

(2.3.26)

Note that the method (2.3.13), which implements the internal process, calls the oracle of
the problem (2.3.16) at each iteration only once. Therefore, we conclude that the estimate
(2.3.26) is the upper complexity bound for the problem class (2.3.16), for which the ε-solution
is defined by the relations (2.3.23). Let us check, how far is the estimate from the lower
bounds.

The principal term in the estimate (2.3.26) is of the order

ln
t0 − t∗

ε
·
√

L

µ
· ln L

µ
.

This value differs from the lower bound for the unconstrained minimization problem by
a factor of ln L

µ
. This means, that the the scheme (2.3.22) is suboptimal for constrained

optimization problems. We cannot say more since the specific lower complexity bounds for
constrained minimization are not known.

To conclude this section, let us answer two technical questions. First, in the scheme
(2.3.22) we assume that we know some estimate t0 < t∗. This assumption is not binding
since we can choose t0 equal to the optimal value of the following minimization problem:

min
x∈Q

[f(x0) + 〈f ′(x0), x− x0〉+
µ

2
‖ x− x0 ‖2].
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Clearly, this value is less or equal to t∗.
Second, we assume that we are able to compute t∗(x̄, t). Recall that t∗(x̄, t) is the root

of the function
f ∗(t; x̄; µ) = min

x∈Q
fµ(t; x̄; x),

where fµ(t; x̄; x) is a max-type function composed with the components

f0(x̄) + 〈f ′0(x̄), x− x̄〉+ µ
2
‖ x− x̄ ‖2 −t,

fi(x̄) + 〈f ′i(x̄), x− x̄〉+ µ
2
‖ x− x̄ ‖2, i = 1, . . . , m.

In view of Lemma 2.3.4, it is the optimal value of the following minimization problem:

min [f0(x̄) + 〈f ′0(x̄), x− x̄〉+ µ
2
‖ x− x̄ ‖2],

s.t. fi(x̄) + 〈f ′i(x̄), x− x̄〉+ µ
2
‖ x− x̄ ‖2≤ 0, i = 1, . . . ,m,

x ∈ Q.

This problem is not a Quadratic Programming Problem, since the constraints are not linear.
However, it can be solved in finite time by a simplex-type process, provided that the objective
function and the constraints have the same Hessian. This problem can be also solved by
Interior-Point Methods.
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Chapter 3

Nonsmooth Convex Programming

3.1 General Convex Functions

(Equivalent Definitions; Closed Functions; Continuity of Convex Functions; Separation The-
orems; Subgradients; Computation rules; Optimality Conditions.)

3.1.1 Motivation and Definitions

In this chapter we consider the methods for solving the general convex minimization problem

min f0(x),

s.t. fi(x) ≤ 0, i = 1 . . . m,

x ∈ Q ⊆ Rn,

(3.1.1)

where Q is a closed convex set and fi(x), i = 0 . . .m, are general convex functions. The term
general means here that those functions can be nondifferentiable.

Clearly, such problem is more difficult than the smooth one. However, in many practical
situations we have to deal with problems, including several nonsmooth convex components.
One possible source of such components are max-type functions:

f(x) = max
1≤j≤p

φj(x),

where φj(x) are convex and differentiable. In the previous section we have seen how we can
treat such function using the gradient mapping. However, if in this function the number
of smooth components p is very large, the computation of the gradient mapping becomes
too expensive. Then, it is reasonable to treat this max-type function as a general convex
function.

In many practical applications, some components of the problem (3.1.1) are given im-
plicitly, as a solution of an auxiliary problem. Such functions are called the functions with
implicit structure. Very often these functions appears to be nonsmooth.

103
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Let us start our considerations with the definition of general convex function. In the
sequel we often omit the term “general”.

Denote by

dom f = {x ∈ Rn : | f(x) |< ∞}
the domain of function f .

Definition 3.1.1 A function f(x) is called convex if its domain is convex and for all x,
y ∈ dom f and α ∈ [0, 1] the following inequality holds:

f(αx + (1− α)y) ≤ αf(x) + (1− α)f(y).

We call f concave if −f is convex.

Comparing this definition with Definition 2.1.1 and Theorem 2.1.2, we see that in the
previous chapter we worked with differentiable functions, which are also the general convex
functions.

Note that now we are not ready at all to speak about any method for solving (3.1.1). In
the previous chapter, our main tool for treating a minimization problem was the gradient of
smooth function. For nonsmooth functions this object clearly does not exist and we have to
find something to replace it. However, to do that, we should study first the properties of the
general convex functions and justify the possibility to define a generalized gradient. That is
a long way, but we must pass it.

A straightforward consequence of Definition 3.1.1 is as follows.

Lemma 3.1.1 (Jensen inequality) For any x1, . . . , xm ∈ dom f and α1, . . . , αm such that

m∑

i=1

αi = 1, αi ≥ 0, i = 1, . . . , m, (3.1.2)

we have:

f

(
m∑

i=1

αixi

)
≤

m∑

i=1

αif(xi).

Proof:
Let us prove the statement by induction in m. Definition 3.1.1 justifies the inequality for
m = 2. Assume it is true for some m ≥ 2. For the set of m + 1 points we have:

m+1∑

i=1

αixi = α1x1 + (1− α1)
m∑

i=1

βixi,

where βi = αi+1

1−α1
. Clearly,

m∑

i=1

βi = 1, βi ≥ 0, i = 1, . . . , m.
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Therefore, using Definition 3.1.1 and our inductive assumption, we have:

f
(

m+1∑
i=1

αixi

)
= f

(
α1x1 + (1− α1)

m∑
i=1

βixi

)

≤ α1f(x1) + (1− α1)f
(

m∑
i=1

βixi

)
≤ m+1∑

i=1
αif(xi).

2

The point x =
m∑

i=1
αixi with the coefficients αi satisfying (3.1.2) is called the convex

combination of points xi.
Let us point out two important consequences of Jensen inequality.

Corollary 3.1.1 Let x be a convex combination of points x1, . . . , xm. Then

f(x) ≤ max
1≤i≤m

f(xi).

Proof:
Indeed, in view of Jensen inequality and since αi ≥ 0,

m∑
i=1

αi = 1, we have:

f(x) = f

(
m∑

i=1

αixi

)
≤

m∑

i=1

αif(xi) ≤ max
1≤i≤m

f(xi). 2

Corollary 3.1.2 Let

∆ = Conv {x1, . . . , xm} ≡ {x =
m∑

i=1

αixi | αi ≥ 0,
m∑

i=1

αi = 1}.

Then maxx∈∆ f(x) ≤ max
1≤i≤n

f(xi). 2

Let us give two equivalent definitions of convex functions.

Theorem 3.1.1 A function f is convex if and only if for all x, y ∈ dom f and β ≥ 0 such
that y + β(y − x) ∈ dom f , we have

f(y + β(y − x)) ≥ f(y) + β(f(y)− f(x)). (3.1.3)

Proof:
1. Let f be convex. Denote α = β

1+β
and u = y + β(y − x). Then

y =
1

1 + β
(u + βx) = (1− α)u + αx.
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Therefore

f(y) ≤ (1− α)f(u) + αf(x) =
1

1 + β
f(u) +

β

1 + β
f(x).

2. Let (3.1.3) holds. Let us fix x, y ∈ dom f and α ∈ (0, 1]. Denote β = 1−α
α

and
u = αx + (1− α)y. Then

x =
1

α
(u− (1− α)y) = u + β(u− y).

Therefore

f(x) ≥ f(u) + β(f(u)− f(y)) =
1

α
f(u)− 1− α

α
f(y). 2

Theorem 3.1.2 Function f is convex if and only if its epigraph

epi (f) = {(x, t) ∈ dom f ×R | t ≥ f(x)}

is a convex set.

Proof:
1. Indeed, if (x1, t1) ∈ epi (f) and (x2, t2) ∈ epi (f), then for any α ∈ [0, 1] we have:

αt1 + (1− α)t2 ≥ αf(x1) + (1− α)f(x2) ≥ f(αx1 + (1− α)x2).

Thus, (αx1 + (1− α)x2, αt1 + (1− α)t2) ∈ epi (f).
2. Let epi (f) be convex. Note that for x1, x2 ∈ dom f

(x1, f(x1)) ∈ epi (f), (x1, f(x2) ∈ epi (f).

Therefore (αx1 + (1− α)x2, αf(x1) + (1− α)f(x2)) ∈ epi (f). That is

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2). 2

We will need also the following property of the sublevel sets of convex functions.

Theorem 3.1.3 If function f is convex then all its sublevel sets

Lf (β) = {x ∈ dom f | f(x) ≤ β}

are either convex or empty.

Proof:
Indeed, if x1 ∈ Lf (β) and x2 ∈ Lf (β), then for any α ∈ [0, 1] we have:

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2) ≤ αβ + (1− α)β = β. 2

Later on, we will see that the behavior of a general convex function on the boundary
of its domain sometimes is out of any control. Therefore, let us introduce one convenient
notion, which will be very useful in our analysis.
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Definition 3.1.2 A convex function f is called closed if its epigraph is a closed set.

As an immediate consequence of the definition we have the following result.

Theorem 3.1.4 If convex function f is closed then all its sublevel sets are either empty or
closed.

Proof:
By its definition, (Lf (β), β) = epi (f)

⋂{(x, t) | t = β}. Therefore, the epigraph Lf (β) is
closed as an intersection of two closed sets. 2

Note that, if f is convex and continuous and its domain dom f is closed then f is a closed
function. However, we will see, that closed convex functions are not necessarily continuous.

Let us look at the examples of convex functions.

Example 3.1.1 1. Linear function is closed and convex.

2. f(x) =| x |, x ∈ R, is closed and convex since its epigraph is

{(x, t) | t ≥ x, t ≥ −x},

the intersection of two closed convex sets (see Theorem 3.1.2).

3. All differentiable convex functions are closed convex functions with dom f = Rn.

4. The function f(x) = 1
x
, x ∈ R0

+, is convex and closed. However, its domain dom f =
int R1

+ is open.

5. The function f(x) =‖ x ‖, where ‖ · ‖ is any norm, is closed and convex:

f(αx1 + (1− α)x2) =‖ αx1 + (1− α)x2 ‖

≤‖ αx1 ‖ + ‖ (1− α)x2 ‖= α ‖ x1 ‖ +(1− α) ‖ x2 ‖
for any x1, x2 ∈ Rn and α ∈ [0, 1]. The most important norms in the numerical analysis
are so called the lp-norms:

‖ x ‖p= [
n∑

i=1

| x(i) |p]1/p, p ≥ 1.

Among those, there are three norms, which are commonly used:

• The Euclidean norm: ‖ x ‖= [
n∑

i=1
(x(i))2]1/2, p = 2.

• The l1-norm: ‖ x ‖1=
n∑

i=1
| x(i) |, p = 1.

• The l∞-norm (Chebyshev norm, uniform norm: ‖ x ‖∞= max
1≤i≤n

| x(i) |, p = ∞.



108 CHAPTER 3. NONSMOOTH CONVEX PROGRAMMING

Any norm defines a system of balls,

B‖·‖(x0, r) = {x ∈ Rn | ‖ x− x0 ‖≤ r}, r ≥ 0,

where r is the radius of the ball and x0 ∈ Rn is its center. We call the ball B‖·‖(0, 1)
the unit ball of the norm ‖ · ‖. Clearly, these balls are convex sets (see Theorem 3.1.3).
For lp-balls of the radius r we use the following notation:

Bp(x0, r) = {x ∈ Rn | ‖ x− x0 ‖p≤ r}.

In what follows we will use the following relation between the Euclidean and l1-balls:

B1(x0, r) ⊂ B2(x0, r) ⊂ B1(x0, r
√

n).

That is true because of the following inequalities:

n∑

i=1

(x(i))2 ≤
(

n∑

i=1

| x(i) |
)2

,

(
1

n

n∑

i=1

| x(i) |
)2

≤ 1

n

n∑

i=1

| x(i) |2 .

6. Upto now, all our examples did not exhibit any pathological behavior. However, let us
look at the following function of two variables:

f(x, y) =





0, if x2 + y2 < 1,

φ(x, y), if x2 + y2 = 1,

where φ(x, y) is an arbitrary nonnegative function defined on the unit sphere. The do-
main of this function is the unit Euclidean ball, which is closed and convex. Moreover,
it is easy to see that f is convex. However, it has no reasonable properties on the
boundary of its domain. Definitely, we want to exclude the functions of that type from
our considerations. That was the reason for introducing the notion of closed function.
It is clear that f(x, y) is not closed unless φ(x, y) ≡ 0.

2

3.1.2 Operations with convex functions

In the previous section we have considered several examples of convex functions. Let us
describe the set of invariant operations of the class of convex functions, which allows to
write out more complex objects.

Theorem 3.1.5 Let functions f1 and f2 are closed and convex and β ≥ 0. Then all of the
following functions are closed and convex:

1). f(x) = βf1(x) , dom f = dom f1.
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2). f(x) = f1(x) + f2(x), dom f = (dom f1)
⋂

(dom f2).

3). f(x) = max{f1(x), f2(x)}, dom f = (dom f1)
⋂

(dom f2).

Proof:
1. The first item is evident: f(αx1 + (1− α)x2) ≤ β(αf1(x1) + (1− α)f1(x2)).

2. For all x1, x2 ∈ (dom f1)
⋂

(dom f2) and α ∈ [0, 1] we have:

f1(αx1 + (1− α)x2) + f2(αx1 + (1− α)x2)

≤ αf1(x1) + (1− α)f1(x2) + αf2(x1) + (1− α)f2(x2)

= α(f1(x1) + f2(x1)) + (1− α)(f1(x2) + f2(x2)).

Thus, f(x) is convex. Let us prove that it is closed. Consider a sequence {(xk, tk)} ⊂ epi (f):

tk ≥ f1(xk) + f2(xk), lim
k→∞

xk = x̄ ∈ dom f, lim
k→∞

tk = t̄.

Since f1 and f2 are closed, we have:

inf lim
k→∞

f1(xk) ≥ f1(x̄), inf lim
k→∞

f2(xk) ≥ f2(x̄).

Therefore
t̄ = lim

k→∞
tk ≥ inf lim

k→∞
f1(xk) + inf lim

k→∞
f2(xk) ≥ f(x̄).

Thus, (x̄, t̄) ∈ epi f .1

3. The epigraph of function f(x) is as follows:

epi f = {(x, t) | t ≥ f1(x) t ≥ f2(x) x ∈ (dom f1)
⋂

(dom f2)} ≡ epi f1

⋂
epi f2.

Thus, epi f is closed and convex as an intersection of two closed convex sets. It remains to
use Theorem 3.1.2. 2

The following theorem demonstrates that the convexity is an affine-invariant property.

Theorem 3.1.6 Let function φ(y), y ∈ Rm, be convex and closed. Consider the affine
operator

A(x) = Ax + b : Rn → Rm.

Then f(x) = φ(A(x) is convex and closed with the following domain:

dom f = {x ∈ Rn | A(x) ∈ dom φ}.
1It is important to understand, that the similar property for the convex sets is not valid. Consider the

following two-dimensional example: Q1 = {(x, y) : y ≥ x, x > 0}, Q2 = {(x, y) : y = 0, x ≤ 0}. Both of
these sets are convex and closed. However, their sum Q1 + Q2 = {(x, y) : y > 0} is convex and open.
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Proof:
For x1 and x2 from dom f denote y1 = A(x1), y2 = A(y2). Then for α ∈ [0, 1] we have:

f(αx1 + (1− α)x2) = φ(A(αx1 + (1− α)x2)) = φ(αy1 + (1− α)y2)

≤ αφ(y1) + (1− α)φ(y2) = αf(x1) + (1− α)f(x2).

Thus, f(x) is convex. The closedness of its epigraph follows from the continuity of the affine
operator A(x). 2

The next theorem is one of the main producers of convex functions with implicit structure.

Theorem 3.1.7 Let ∆ be some set and

f(x) = sup{φ(y, x) | y ∈ ∆}.
Suppose that for any fixed y ∈ ∆ the function φ(y, x) is closed and convex in x. Then f(x)
is closed and convex with the domain

dom f = {x ∈ ⋂

y∈∆

dom φ(y, ·) | ∃γ : φ(y, x) ≤ γ ∀y ∈ ∆}. (3.1.4)

Proof:
Indeed, If x belongs to the right-hand side of equation (3.1.4) then f(x) < ∞ and we conclude
that x ∈ dom f . If x does not belong to this set, then there exists a sequence {yk} such that
φ(yk, x) →∞. Therefore x does not belong to dom f .

Finally, it is clear that (x, t) ∈ epi f if and only if for all y ∈ ∆ we have:

x ∈ dom φ(y, ·), t ≥ φ(y, x).

This means that
epi f =

⋂

y∈∆

epi φ(y, ·).

Therefore it is convex and closed since every epi φ(y, ·) is closed and convex. 2

Now we are ready to look at some more sophisticated examples of convex functions.

Example 3.1.2 1. The function f(x) = max
1≤i≤n

{x(i)} is closed and convex.

2. Let λ = (λ(1), . . . , λ(m)) and ∆ be a set in Rm
+ . Consider the function

f(x) = sup
λ∈∆

m∑

i=1

λifi(x),

where fi are closed and convex. In view of Theorem 3.1.5, the epigraphs of the functions

φλ(x) =
m∑

i=1

λifi(x)

are convex and closed. Thus, f(x) is closed and convex in view of Theorem 3.1.7. Note
that we did not assume anything about the structure of the set ∆.
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3. Let Q be a convex set. Consider the function

ψQ(x) = sup{〈g, x〉 | g ∈ Q}.

Function ψQ(x) is called the support function of the set Q. Note that ψQ(x) is closed
and convex in view of Theorem 3.1.7. This function is homogeneous of degree one:

ψQ(tx) = tψQ(x), x ∈ dom Q, t ≥ 0.

4. If the set Q is bounded then dom ψQ = Rn.

5. Let Q be a set in Rn. Consider the function ψ(g, γ) = sup
y∈Q

φ(y, g, γ), where

φ(y, g, γ) = 〈g, y〉 − γ

2
‖ y ‖2 .

The function ψ(g, γ) is closed and convex in (g, γ) in view of Theorem 3.1.7. Let us
look at its properties.

If Q is bounded then dom ψ = Rn+1. Consider the case Q = Rn. Let us describe the
domain of ψ. If γ < 0 then for any g 6= 0 we can take yα = αg. Clearly, along these
sequence φ(yα, g, γ) →∞ as α →∞. Thus, dom ψ contains only points with γ ≥ 0.

If γ = 0, the only possible value for g is zero since otherwise the function φ(y, g, 0) is
unbounded.

Finally, if γ > 0 then the point maximizing φ(y, g, γ) with respect to y is y∗(g, γ) = 1
γ
g

and we get the following expression for ψ:

ψ(g, γ) =
‖ g ‖2

2γ
.

Thus,

ψ(g, γ) =





0, if g = 0, γ = 0,

‖g‖2
2γ

, if γ > 0,

with the domain dom ψ = (Rn × {γ > 0}) ⋃
(0, 0). Note that this is a convex set, which

is neither closed or open. Nevertheless, ψ is a closed convex function. Note that this
function is not continuous at the origin:

lim
γ↓0

ψ(
√

γg, γ) = 1
2
‖ g ‖2 .

2
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3.1.3 Continuity and Differentiability of Convex Functions

In the previous sections we have seen that the behavior of convex functions at the points of
the boundary of its domain can be rather disappointing (see Examples 3.1.1(6), 3.1.2(5)).
Fortunately, this is the only bad news about convex functions. In this section we will see
that the structure of convex functions in the interior of its domain is very simple.

Lemma 3.1.2 Let function f be convex and x0 ∈ int (dom f). Then f is locally upper
bounded at x0.

Proof:
Let us choose some ε > 0 such that x0 ± εei ∈ int (dom f), i = 1 . . . n, where ei are the
coordinate orths of Rn. Denote ∆ = Conv {x0 ± εei, i = 1 . . . n}.

Let us show that ∆ ⊃ B2(x0, ε̄), ε̄ = ε√
n
. Indeed, consider

x = x0 +
n∑

i=1

hiei,
n∑

i=1

(hi)
2 ≤ ε̄.

We can assume that hi ≥ 0 (otherwise we can choose −ei instead of ei in the above repre-
sentation of the point x). Then

β ≡ n∑
i=1

hi ≤
√

n
n∑

i=1
(hi)

2 ≤ ε.

Therefore for h̄i = 1
β
hi we have:

x = x0 + β
n∑

i=1

h̄iei = x0 +
β

ε

n∑

i=1

h̄iεei =

(
1− β

ε

)
x0 +

β

ε

n∑

i=1

h̄i(x0 + εei) ∈ ∆.

Thus, using Corollary 3.1.2, we obtain:

M ≡ max
x∈B2(x0,ε̄)

f(x) ≤ max
x∈∆

f(x) ≤ max
1≤i≤n

f(x0 ± εei). 2

Remarkably enough, the above result implies the continuity of convex function in the
interior of its domain.

Theorem 3.1.8 Let f be convex and x0 ∈ int (dom f). Then f is locally Lipshitz continuous
at x0.

Proof:
Let B2(x0, ε) ⊆ dom f and sup{f(x) | x ∈ B2(x0, ε)} ≤ M (M is finite in view of Lemma
3.1.2). Consider y ∈ B2(x0, ε), y 6= x0. Denote

α = 1
ε
‖ y − x0 ‖, z = x0 + 1

α
(y − x0).

It is clear that ‖ z−x0 ‖= 1
α
‖ y−x0 ‖= ε. Therefore α ≤ 1 and y = αz +(1−α)x0. Hence,

f(y) ≤ αf(z) + (1− α)f(x0) ≤ f(x0) + α(M − f(x0)) = f(x0) +
M − f(x0)

ε
‖ y − x0 ‖ .
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Further, denote u = x0+ 1
α
(x0−y). Then ‖ u−x0 ‖= ε and y = x0+α(x0−u). Therefore,

in view of Theorem 3.1.1 we have:

f(y) ≥ f(x0) + α(f(x0)− f(u)) ≥ f(x0)− α(M − f(x0)) = f(x0)− M − f(x0)

ε
‖ y − x0 ‖ .

Thus, | f(y)− f(x0) |≤ M−f(x0)
ε

‖ y − x0 ‖. 2

Let us demonstrates that the convex functions possess a kind of differentiability.

Definition 3.1.3 Let x ∈ dom f . We call f differentiable in the direction p at the point x
if the following limit exists:

f ′(x; p) = lim
α↓0

1

α
[f(x + αp)− f(x)] (3.1.5)

Theorem 3.1.9 A convex function f is differentiable in any direction at any point of the
interior of its domain.

Proof:

Let x ∈ int (dom f). Consider the function

φ(α) =
1

α
[f(x + αp)− f(x)], α > 0.

Let γ ∈ (0, 1] and α ∈ (0, ε] is small enough to have x + εp ∈ dom f . Then

f(x + αβp) = f((1− β)x + β(x + αp)) ≤ (1− β)f(x) + βf(x + αp).

Therefore

φ(αβ) =
1

αβ
[f(x + αβp)− f(x0)] ≤ 1

α
[f(x + αp)− f(x)] = φ(α).

Thus, φ(α) decreases as α ↓ 0. Hence, the limit in (3.1.5) exists. 2

Let us prove that the directional derivative provides us with a global lower estimate of
the function values.

Lemma 3.1.3 Let f be a convex function and x ∈ int (dom f). Then f ′(x; p) is a convex
homogeneous (of degree one) function of p. For any y ∈ dom f we have:

f(y) ≥ f(x) + f ′(x; y − x). (3.1.6)
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Proof:
Let us prove first, that the directional derivative is homogeneous. Indeed, for p ∈ Rn and
τ > 0 we have:

f ′(x; τp) = lim
α↓0

1

α
[f(x + ταp)− f(x)] = τ lim

β↓0
1

β
[f(x + βp)− f(x)] = τf ′(x0; p).

Further, for any p1, p2 ∈ Rn and β ∈ [0, 1] we obtain:

f ′(x; βp1 + (1− β)p2) = lim
α↓0

1
α
[f(x + α(βp1 + (1− β)p2))− f(x)]

≤ lim
α↓0

1
α
{β[f(x + αp1)− f(x)] + (1− β)[f(x + αp2)− f(x)]}

= βf ′(x; p1) + (1− β)f ′(x; p2).

Thus, f ′(x; p) is convex in p. Finally, let α ∈ (0, 1], y ∈ dom f and yα = x + α(y− x). Then
in view of Theorem 3.1.1, we have:

f(y) = f(yα +
1

α
(1− α)(yα − x)) ≥ f(yα) +

1

α
(1− α)[f(yα)− f(x)],

and we get (3.1.6) taking the limit in α ↓ 0. 2

3.1.4 Separation Theorems

Note, that up to now we were describing the properties of convex functions in terms of
function values. We did not introduce any directions which could be useful for constructing
the minimization schemes. In Convex Analysis such directions are defined by separation
theorems, which we present in this section.

Definition 3.1.4 Let Q be a convex set. We say that the hyperplane

H(g, γ) = {x ∈ Rn | 〈g, x〉 = γ}, g 6= 0,

is supporting to Q if any x ∈ Q satisfies inequality 〈g, x〉 ≤ γ.
We say that the hyperplane H(g, γ) separates a point x0 from Q if

〈g, x〉 ≤ γ ≤ 〈g, x0〉 (3.1.7)

for all x ∈ Q. If the second inequality in (3.1.7) is strict, we call the separation strict.

The separation theorems are based on the properties of projection.

Definition 3.1.5 Let Q be a set and x0 ∈ Rn. Denote

πQ(x0) = arg min{‖ x− x0 ‖: x ∈ Q}.
We call πQ(x0) the projection of the point x0 onto the set Q.



3.1. GENERAL CONVEX FUNCTIONS 115

Theorem 3.1.10 If Q is a closed convex set, then the point πQ(x0) exists and unique.

Proof:
Indeed, πQ(x0) = arg min{φ(x) | x ∈ Q}, where φ(x) = 1

2
‖ x − x0 ‖2 is a function from

S1,1
1,1 (Rn). Therefore πQ(x0) is unique and well-defined in view of Theorem 2.2.6. 2

It is clear that πQ(x0) = x0 if and only if x0 ∈ Q and Q is closed.

Lemma 3.1.4 Let Q be a closed convex set and x0 /∈ Q. Then for any x ∈ Q we have:

〈πQ(x0)− x0, x− πQ(x0)〉 ≥ 0. (3.1.8)

Proof:
Note that πQ(x0) is the solution to the problem min

x∈Q
φ(x) with φ(x) = 1

2
‖ x − x0 ‖2.

Therefore, in view of Theorem 2.2.5 we have:

〈φ′(πQ(x0)), x− πQ(x0)〉 ≥ 0

for all x ∈ Q. It remains to note that φ′(x) = x− x0. 2

Finally, we need a kind of triangle inequality for the projection.

Lemma 3.1.5 For any x ∈ Q we have ‖ x− πQ(x0) ‖2 + ‖ πQ(x0)− x0 ‖2≤‖ x− x0 ‖2.

Proof:
Indeed, in view of (3.1.8), we have:

‖ x− πQ(x0) ‖2 − ‖ x− x0 ‖2= 〈x0 − πQ(x0), 2x− πQ(x0)− x0〉 ≤ − ‖ x0 − πQ(x0) ‖2 . 2

Now we can prove the separation theorems. We will need two theorems of that types.
First one describes our possibilities in strict separation.

Theorem 3.1.11 Let Q be a closed convex set and x0 /∈ Q. Then there exists a hyperplane
H(g, γ) strictly separating x0 from Q. Namely, we can take

g = x0 − πQ(x0) 6= 0, γ = 〈x0 − πQ(x0), πQ(x0)〉.
Proof:
Indeed, in view of (3.1.8), for any x ∈ Q we have:

〈x0 − πQ(x0), x〉 ≤ 〈x0 − πQ(x0), πQ(x0)〉 = 〈x0 − πQ(x0), x0〉− ‖ x0 − πQ(x0) ‖2 . 2

Let us give an example of application of the above theorem.

Corollary 3.1.3 Let Q1 and Q2 be two closed convex sets.
1. If for any g ∈ dom ψQ2 we have ψQ1(g) ≤ ψQ2(g) then Q1 ⊆ Q2.
2. Let dom ψQ1 = dom ψQ2 and for any g ∈ dom ψQ1 we have ψQ1(g) = ψQ2(p). Then

Q1 ≡ Q2.
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Proof:
1. Assume that there exists x0 ∈ Q1, which does not belong to Q2. Then, in view of Theorem
3.1.11, there exists a direction g such that

〈g, x0〉 > γ ≥ 〈g, x〉

for all x ∈ Q2. Hence, g ∈ dom ψQ2 and ψQ1(g) > ψQ2(g). That is a contradiction.
2. In view of the first statement, Q1 ⊆ Q2 and Q2 ⊆ Q1. Therefore, Q1 ≡ Q2. 2

The next separation theorem deals with the boundary points of convex sets.

Theorem 3.1.12 Let Q be a closed convex set and x0 ∈ ∂Q. Then there exists a hyperplane
H(g, γ), supporting to Q and passing through x0.

(Such vector g is called supporting to Q at x0.)
Proof:
Consider a sequence {yk} such that yk /∈ Q and yk → x0. Denote

gk =
yk − πQ(yk)

‖ yk − πQ(yk) ‖ , γk = 〈gk, πQ(yk)〉.

In view of Theorem 3.1.11, for all x ∈ Q we have:

〈gk, x〉 ≤ γk ≤ 〈gk, yk〉. (3.1.9)

However, ‖ gk ‖= 1 and the sequence {γk} is bounded:

| γk |=| 〈gk, πQ(yk)− x0〉+ 〈gk, x0〉 |≤‖ πQ(yk)− x0 ‖ + ‖ x0 ‖≤‖ yk − x0 ‖ + ‖ x0 ‖

in view of Lemma 3.1.5. Therefore, without loss of generality we can assume that there exist
g∗ = lim

k→∞
gk and γ∗ = lim

k→∞
γk. It remains to take the limit in (3.1.9). 2

3.1.5 Subgradients

Now we are completely ready to introduce some replacement for the gradient of smooth
function.

Definition 3.1.6 Let f be a convex function. A vector g is called the subgradient of function
f at point x0 ∈ dom f if for any x ∈ dom f we have:

f(x) ≥ f(x0) + 〈g, x− x0〉. (3.1.10)

The set of all subgradients of f at x0, ∂f(x0), is called the subdifferential of function f at
the point x0.
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The necessity of the notion of subdifferential is clear from the following example.

Example 3.1.3 Consider the function f(x) =| x |, x ∈ R1. For all y ∈ R and g ∈ [−1, 1]
we have:

f(y) =| y |≥ g · y = f(0) + g · (y − 0).

Therefore, the subgradient of f at x = 0 is not unique. In our example it is the whole
segment [−1, 1]. 2

The whole set of inequalities (3.1.10), x ∈ dom f , can be seen as the constraints, defining
the set ∂f(x0). Therefore, by definition, the subdifferential is a closed convex set.

Note that the subdifferentiability of a function implies cinvexity.

Lemma 3.1.6 Let for any x ∈ dom f we have ∂f(x) 6= ∅. Then f is convex.

Proof:
Indeed, let x, y ∈ dom f , α ∈ [0, 1]. Consider yα = x + α(y − x). Let g ∈ ∂f(yα). Then

f(y) ≥ f(yα) + 〈g, y − yα〉 = f(yα) + (1− α)〈g, y − x〉,

f(x) ≥ f(yα) + 〈g, x− yα〉 = f(yα)− α〈g, y − x〉.

Adding these inequalities multiplied by α and (1− α) respectively, we get

αf(y) + (1− α)f(x) ≥ f(yα). 2

On the other hand, we can prove a converse statement.

Theorem 3.1.13 Let f be a closed convex function and x0 ∈ int (dom f). Then ∂f(x0) is
a nonempty bounded set.

Proof:
Note that the point (f(x0), x0) belongs to the boundary of epi (f). Hence, in view of Theorem
3.1.12, the exists a hyperplane supporting to epi (f) at (f(x0), x0):

−ατ + 〈d, x〉 ≤ −αf(x0) + 〈d, x0〉

for all (τ, x) ∈ epi (f). Note that we can take

‖ d ‖2 +α2 = 1. (3.1.11)

Since for all τ ≥ f(x0) the point (τ, x0) belongs to epi (f), we conclude that α ≥ 0.
Recall, that a convex function is locally upper bounded in the interior of its domain

(Lemma 3.1.2). This means that there exist some ε > 0 and M > 0 such that B2(x0, ε) ⊆
dom f and

f(x)− f(x0) ≤ M ‖ x− x0 ‖
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for all x ∈ B2(x0, ε). Therefore, for any x from this ball we have:

〈d, x− x0〉 ≤ α(f(x)− f(x0) ≤ αM ‖ x− x0 ‖ .

Choosing x = x0 + εd we get ‖ d ‖2≤ Mα ‖ d ‖. Thus, in view of the normalizing condition
(3.1.11) we obtain:

α ≥ 1√
1 + L2

.

Hence, choosing g = d/α we get

f(x) ≥ f(x0) + 〈g, x− x0〉
for all x ∈ dom f .

Finally, if g ∈ ∂f(x0), g 6= 0, then choosing x = x0 + εg/ ‖ g ‖ we obtain:

ε ‖ g ‖= 〈g, x− x0〉 ≤ f(x)− f(x0) ≤ M ‖ x− x0 ‖= Mε.

Thus, ∂f(x0) is bounded. 2

Let us show that the conditions of the above theorem cannot be relaxed.

Example 3.1.4 Consider the function f(x) = −√x with the domain {x ∈ R1 | x ≥ 0}.
This function is convex and closed, but the subdifferential does not exist at x = 0. 2

Let us fix out an important relation between the subdifferential and the directional deriva-
tive of convex function.

Theorem 3.1.14 Let f be a closed convex function. For any x0 ∈ int (dom f) and p ∈ Rn

we have:
f ′(x0; p) = max{〈g, p〉 | g ∈ ∂f(x0)}.

Proof:
Note that

f ′(x0; p) = lim
α↓0

1
α
[f(x0 + αp)− f(x0)] ≥ 〈g, p〉, (3.1.12)

where g is an arbitrary vector from ∂f(x0). Therefore, there subdifferential of function
f ′(x0; p) at p = 0 exists and ∂f(x0) ⊆ ∂pf

′(x0; 0). On the other hand, since f ′(x0), p) is
convex in p, in view of Lemma 3.1.3, for any y ∈ dom f we have:

f(y) ≥ f(x0) + f ′(x0; y − x0) ≥ f(x0) + 〈g, y − x0〉,
where g ∈ ∂pf

′(x0; 0). Thus, ∂pf
′(x0; 0) ⊆ ∂f(x0) and we conclude that ∂f(x0) ≡ ∂pf

′(x0; 0).
Consider gp ∈ ∂pf

′(x0; p). Then, in view of inequality (3.1.6), for all v ∈ Rn and τ > 0
we have:

τf ′(x0; v) = f ′(x0; τv) ≥ f ′(x0; p) + 〈gp, τv − p〉.
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Considering τ →∞ we conclude that

f ′(x0; v) ≥ 〈gp, v〉, (3.1.13)

and, considering τ → 0, we obtain

f ′(x0; p)− 〈gp, p〉 ≤ 0. (3.1.14)

However, the inequality (3.1.13) implies that gp ∈ ∂pf
′(x0; 0). Therefore, comparing (3.1.12)

and (3.1.14) we conclude that 〈gp, p〉 = f ′(x0; p). 2

To conclude this section, let us point out several properties of subgradients, which are of
main importance for optimization. Let us start from the optimality condition.

Theorem 3.1.15 We have f(x∗) = min
x∈dom f

f(x). if and only if 0 ∈ ∂f(x∗).

Proof:
Indeed, if 0 ∈ ∂f(x∗) then f(x) ≥ f(x∗) + 〈0, x − x∗〉 = f(x∗) for all x ∈ dom f . On the
other hand, if f(x) ≥ f(x∗) for all x ∈ dom f then 0 ∈ ∂f(x∗) in view of Definition 3.1.6. 2

The next result forms the basis for the cutting plane schemes, which we will consider in
the next lecture.

Theorem 3.1.16 For any x0 ∈ dom f all vectors g ∈ ∂f(x0) are supporting to the sublevel
set Lf (f(x0)): 〈g, x0 − x ≥ 0 for any x ∈ Lf (f(x0)) = {x ∈ dom f : f(x) ≤ f(x0)}.

Proof:
Indeed, if f(x) ≤ f(x0) and g ∈ ∂f(x0) then f(x0) + 〈g, x− x0〉 ≤ f(x) ≤ f(x0). 2

Corollary 3.1.4 Let Q ⊆ dom f be a closed convex set, x0 ∈ Q and

x∗ = arg min{f(x) | x ∈ Q}.

Then for any g ∈ ∂f(x0) we have: 〈g, x0 − x∗〉 ≥ 0. 2

3.1.6 Computing the subgradients

In the previous section we have introduced the subgradients, which we are going to use in
our minimization schemes. However, in order to apply these schemes in practice, we have to
be sure that we can compute these objects for concrete convex functions. In this section we
present the rules for computation the subgradients.
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Lemma 3.1.7 Let f be a closed convex function. Assume that it is differentiable on its
domain. Then ∂f(x) = {f ′(x)} for any x ∈ int (dom f).

Proof:
Let us fix some x ∈ int (dom f). Then, in view of Theorem 3.1.14, for any direction p ∈ Rn

and any g ∈ ∂f(x) we have:

〈f ′(x), p〉 = f ′(x; p) ≥ 〈g, p〉.

Changing the sign of p, we conclude that 〈f ′(x), p〉 = 〈g, p〉 for all g from ∂f(x). Finally,
considering p = ek, k = 1 . . . n, we get g = f ′(x). 2

Let us provide now all operations with convex functions, described in Section 3.1.2, with
the corresponding rules for updating the subgradients.

Lemma 3.1.8 Let function f(y) be closed and convex with dom f ⊆ Rm. Consider the
affine operator

A(x) = Ax + b : Rn → Rm.

Then the function φ(x) = f(A(x)) is closed and convex with domain dom φ = {x | A(x) ∈
dom f} and for any x ∈ int (dom φ) we have:

∂φ(x) = AT ∂f(A(x)).

Proof:
In Theorem 3.1.6 we have already proved the first part of this lemma. Let us prove the
relation for the subdifferential.

Indeed, let y0 = A(x0). Then for all p ∈ Rn we have:

φ′(x0, p) = f ′(y0; Ap) = max{〈g, Ap〉 | g ∈ ∂f(y0)} = max{〈ḡ, p〉 | ḡ ∈ AT ∂f(y0)}.

Using Theorem 3.1.14 and Corollary 3.1.3, we get ∂φ(x0) = AT ∂f(A(x0)). 2

Lemma 3.1.9 Let f1(x) and f2(x) are closed convex functions and α1, α2 ≥ 0. Then the
function

f(x) = α1f1(x) + α2f2(x)

is closed and convex and

∂f(x) = α1∂f1(x) + α2∂f2(x) (3.1.15)

for x ∈ int (dom f) = int (dom f1)
⋂

int (dom f2).

Proof:
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In view of Theorem 3.1.5, we need to prove only the relation for the subdifferentials. Consider
x0 ∈ int (dom f1)

⋂
int (dom f2). Then, for any p ∈ Rn we have:

f ′(x0; p) = α1f
′
1(x0; p) + α2f

′
2(x0; p)

= max{〈g1, α1p〉 | g1 ∈ ∂f1(x0)}+ max{〈g2, α2p〉 | g2 ∈ ∂f2(x0)}

= max{〈α1g1 + α2g2, p〉 | g1 ∈ ∂f1(x0), g2 ∈ ∂f2(x0)}

= max{〈g, p〉 | g ∈ α1∂f1(x0) + α2∂f2(x0)}.
Using Theorem 3.1.14 and Corollary 3.1.3, we get (3.1.15). 2

Lemma 3.1.10 Let the functions fi(x), i = 1 . . .m, are closed and convex. Then the func-

tion f(x) = max
1≤i≤m

fi(x) is also closed and convex. For any x ∈ int (dom f) =
m⋂

i=1
int (dom fi)

we have:
∂f(x) = Conv {∂fi(x) | i ∈ I(x)}, (3.1.16)

where I(x) = {i : fi(x) = f(x)}.
Proof:
Again, in view of Theorem 3.1.5, we need to deal only with the subdifferentials. Consider

x ∈ m⋂
i=1

int (dom fi). Assume that I(x) = 1 . . . k. Then for any p ∈ Rn we have:

f ′(x; p) = max
1≤i≤k

f ′i(x; p) = max
1≤i≤k

max{〈gi, p〉 | gi ∈ ∂fi(x)}.

Note that for any numbers a1 . . . ak we have:

max
1≤i≤k

ai = max{
k∑

i=1

λiai | {λi} ∈ ∆k},

where ∆k = {λi ≥ 0,
k∑

i=1
λi = 1}, the k-dimensional standard simplex. Therefore,

f ′(x; p) = max
{λi}∈∆k

{ k∑
i=1

λi max{〈gi, p〉 | gi ∈ ∂fi(x)}

= max{〈 k∑
i=1

λigi, p〉 | gi ∈ ∂fi(x), {λi} ∈ ∆k}

= max{〈g, p〉 | g =
k∑

i=1
λigi, gi ∈ ∂fi(x), {λi} ∈ ∆k}

= max{〈g, p〉 | g ∈ Conv {∂fi(x), i ∈ I(x)} }. 2

The last rule we consider, does not have a “closed” form. However, it can be useful for
computing the elements of the subdifferential.
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Lemma 3.1.11 Let ∆ be a set and f(x) = sup{φ(y, x) | y ∈ ∆}. Suppose that for any
fixed y ∈ ∆ the function φ(y, x) is closed and convex in x. Then f(x) is closed convex.

Moreover, for any x from

dom f = {x ∈ Rn | ∃γ : φ(y, x) ≤ γ ∀y ∈ ∆}

we have

∂f(x) ⊇ Conv {∂φx(y, x) | y ∈ I(x)},
where I(x) = {y | φ(y, x) = f(x)}.

Proof:

In view of Theorem 3.1.7, we have to prove only the inclusion. Indeed, for any x ∈ dom f ,
y ∈ I(x) and g ∈ ∂φx(y, x) we have:

f(x) ≥ φ(y, x) ≥ φ(y, x0) + 〈g, x− x0〉 = f(x0) + 〈g, x− x0〉. 2

Now we can look at the examples of subdifferentials.

Example 3.1.5

1. Let f(x) =| x |, x ∈ R1. Then ∂f(0) = [−1, 1] since f(x) = max
−1≤g≤1

g · x.

2. Consider the function f(x) =
m∑

i=1
| 〈ai, x〉 − bi |. Denote

I−(x) = {i : 〈ai, x〉 − bi < 0},

I+(x) = {i : 〈ai, x〉 − bi > 0},

I0(x) = {i : 〈ai, x〉 − bi = 0}.

Then ∂f(x) =
∑

i∈I+(x)
ai − ∑

i∈I−(x)
ai +

∑
i∈I0(x)

[−ai, ai].

3. Consider the function f(x) = max
1≤i≤n

x(i). Denote I(x) = {i : x(i) = f(x)}. Then

∂f(x) = Conv {ei | i ∈ I(x)}. For x = 0 we have:

∂f(0) = Conv {ei | 1 ≤ i ≤ n}.

4. For Euclidean norm f(x) =‖ x ‖ we have:

∂f(0) = B2(0, 1) = {x ∈ Rn | ‖ x ‖≤ 1}, ∂f(x) = {x/ ‖ x ‖}, x 6= 0.
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5. For the infinity norm f(x) =‖ x ‖∞= max
1≤i≤n

| x(i) | we have:

∂f(0) = B1(0, 1) = {x ∈ Rn | n∑
i=1

| x(i) |≤ 1},

∂f(x) = Conv {[−ei, ei] | i ∈ I(x)}, x 6= 0,

where I(x) = {i : | x(i) |= f(x)}.

6. For l1-norm f(x) =‖ x ‖1=
n∑

i=1
| x(i) | we have:

∂f(0) = B∞(0, 1) = {x ∈ Rn | max
1≤i≤n

| x(i) |≤ 1},

∂f(x) =
∑

i∈I+(x)
ei − ∑

i∈I−(x)
ei +

∑
i∈I0(x)

[−ei, ei], x 6= 0,

where I+(x) = {i | x(i) > 0}, I−(x) = {i | x(i) < 0} and I0(x) = {i | x(i) = 0}.
We leave the justification of these examples as an exercise for the reader. 2

We conclude this lecture with one example of application of the developed technique for
deriving an optimality condition for constrained minimization problem.

Theorem 3.1.17 (Kuhn-Tucker). Let fi are differentiable convex functions, i = 0 . . .m.
Suppose that there exists a point x̄ such that fi(x̄) < 0 for all i = 1 . . . m.

A point x∗ is a solution to the problem

min{f0(x) | fi(x) ≤ 0, i = 1 . . . m} (3.1.17)

if and only if there exist nonnegative numbers λi, such that

f ′0(x
∗) +

∑

i∈I∗
λif

′
i(x

∗) = 0,

where I∗ = {i ∈ [1,m] : fi(x
∗) = 0}.

Proof:
In view of Lemma 2.3.4, x∗ is a solution to (3.1.17) if and only if it is a global minimizer of
the function

φ(x) = max{f0(x)− f ∗; fi(x), i = 1 . . . m}.
In view of Theorem 3.1.15, this is the case if and only if 0 ∈ ∂φ(x∗). Further, in view of
Lemma 3.1.10, this is true if and only if there exist nonnegative λ̄i, such that

λ̄0f
′
0(x

∗) +
∑

i∈I∗
λ̄if

′
i(x

∗) = 0, λ̄0 +
∑

i∈I∗
λ̄i = 1.
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Thus, we need to prove only that λ̄0 > 0. Indeed, if λ̄0 = 0 then
∑

i∈I∗
λ̄ifi(x̄) ≥ ∑

i∈I∗
λ̄i[fi(x

∗) + 〈f ′i(x∗), x̄− x∗〉] = 0.

This is a contradiction. Therefore λ̄0 > 0 and we can take λi = λ̄i/λ̄0, i ∈ I∗. 2

3.2 Nonsmooth Minimization Methods

(General Lower Complexity Bounds; Main Lemma; Localization Sets; Subgradient Method;
Constrained Minimization Scheme; Optimization in finite dimension; Lower Complexity
Bounds; Cutting Plane Scheme; Center of Gravity Method; Ellipsoid Method; Other Meth-
ods.)

3.2.1 General Lower Complexity Bounds

In the previous lecture we have considered the class of general convex functions. These func-
tions can be nonsmooth and therefore we can expect that the corresponding minimization
problem can be rather difficult. Same as for smooth problems, let us try to derive the lower
complexity bounds, which will help us to evaluate the performance of numerical methods we
will consider.

In this section we derive such bounds for the unconstrained minimization problem

min
x∈Rn

f(x). (3.2.1)

where f is a convex function. Thus, our problem class is as follows:

Problem class: 1. Unconstrained minimization.
2. f is convex on Rn and Lipshitz continuous

on some bounded set.

Oracle: First-order black box:
at each point x̂ we can compute

f(x̂), g(x̂) ∈ ∂f(x̂),
where g(x̂) is an arbitrary subgradient.

Approximate solution: Find x̄ ∈ Rn : f(x̄)− f ∗ ≤ ε.

Methods: Generate a sequence {xk} :
xk ∈ x0 + Lin {g(x0), . . . , g(xk−1)}.





(3.2.2)

Same as in Section 2.1.2, for deriving a lower complexity bound for our problem class,
we will study the behavior of the numerical methods on some function, which appears to be
very difficult to minimize.
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Let us fix some constants µ > 0, γ > 0. Consider the family of functions

fk(x) = γ max
1≤i≤k

x(i) +
µ

2
‖ x ‖2, k = 1 . . . n.

Using the rules for computation of subdifferentials, described in the previous lecture, we can
write out the subdifferential of fk at x. That is

∂fk(x) = µx + γConv {ei | i ∈ I(x)}, I(x) = {j | 1 ≤ j ≤ k, x(j) = max
1≤i≤k

x(i)}.

Therefore for any x, y ∈ B2(0, ρ), ρ > 0, and any gk(y) ∈ ∂fk(y) we have

fk(y)− fk(x) ≤ 〈gk(y), y − x〉 ≤‖ gk(y) ‖ · ‖ y − x ‖≤ (µρ + γ) ‖ y − x ‖ .

Thus, fk is Lipshitz continuous on the ball B2(0, ρ) with the constant M = µρ + γ.
Further, consider the point x∗k with the following coordinates:

(x∗k)
(i) =





− γ
µk

, 1 ≤ i ≤ k,

0, k + 1 ≤ i ≤ n.

It is easy to check that 0 ∈ ∂fk(x
∗
k) and therefore x∗k is the minimum of function fk(x) (see

Theorem 3.1.15). Note that

Rk ≡‖ x∗k ‖=
γ

µ
√

k
, f ∗k = − γ2

µk
+

µ

2
R2

k = − γ2

2µk
.

Let us describe now the resisting oracle for the function fk(x). Since the analytical form
of this function is fixed, the resistance of the oracle can only consist of providing us with
the worst possible subgradient at each test point. The algorithmic scheme of this oracle is
as follows.

Input: x ∈ Rn.

Main Loop: f := −∞; i∗ := 0;

for j := 1 to m do if x(j) > f then { f := x(j); i∗ := j };

f := γf + µ
2
‖ x ‖2; g := ei∗ + µx;

Output: fk := f, gk(x) := g ∈ Rn.

At the first glance, there is nothing bad in this scheme: Its main loop is just a standard
process for finding a maximal element of the vector x ∈ Rn. However, the main feature of
this loop is that we always use a coordinate vector for computation of the subgradient. In
our case, this vector corresponds to i∗, which is the minimal number among all indices in
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I(x). Let us check what happens with a minimizing sequence, generated with the aid of this
oracle.

Let us choose the staring point of our process x0 = 0. Denote

Rp,n = {x ∈ Rn | x(i) = 0, p + 1 ≤ i ≤ n}

Since x0 = 0, the answer of the oracle is fk(x0) = 0 and gk(x0) = e1. Therefore the next point
of the sequence, x1, necessarily belongs to R1,n. Assume now that the current test point of
the sequence, xi, belongs to Rp,n, 1 ≤ p ≤ k. Then the oracle will return a subgradient

g = µxi + γei∗ ,

where i∗ ≤ p + 1. Therefore, the next test point xi+1 belongs to Rp+1,n.
This simple reasoning proves that for all i, 1 ≤ i ≤ k, we have xi ∈ Ri,n. Consequently,

for i: 1 ≤ i ≤ k − 1, we cannot improve the starting value of the objective function:

fk(xi) ≥ γ max
1≤j≤k

x
(j)
i = 0.

Let us convert our observations in a lower complexity bound. For that, let us specify
some parameters of our problem class P(x0, R, M), where R > 0 and M > 0. In addition to
(3.2.2) we assume that

• the solution of the problem (3.2.1), x∗, exists and ‖ x0 − x∗ ‖≤ R.

• f is Lipshitz continuous on B(x0, R) with the constant M > 0.

Theorem 3.2.1 For any class P(x0, R,M) and any k, 0 ≤ k ≤ n−1, there exists a function
f ∈ P(x0, R, M) such that

f(xk)− f ∗ ≥ MR

2(1 +
√

k + 1)

for any method, generating a sequence {xk}, satisfying the following condition:

xk ∈ x0 + Lin {g(x0), . . . , g(xk−1)}.

Proof:
Without loss of generality we can assume that x0 = 0. Let us choose f(x) = fk+1(x) with

γ =
√

k+1M
1+
√

k+1
, µ = M

(1+
√

k+1)R
.

Then
f ∗ = f ∗k+1 = − γ2

2µ(k+1)
= − MR

2(1+
√

k+1)
,

‖ x0 − x∗ ‖= Rk+1 = γ
µ
√

k+1
= R,

and f(x) is Lipshitz continuous on B2(x0, R) with the constant µR + γ = M . Note that
xk ∈ Rk,n. Hence, f(xk)− f ∗ ≥ −f ∗. 2
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Note, that the lower complexity bound, presented in this theorem is uniform in the
dimension of the space of variables. Same as the lower bound of Theorem 2.1.6, it can
be applyed to the problems with very large dimension, or to the efficiency analysis of the
starting iterations of the minimization schemes (k ≤ n− 1).

We will see that our lower estimate is exact: There are the minimization methods, which
have the rate of convergence, proportional to this bound. Comparing this bound with the
lower bound for smooth minimization problems, we can see that now the possible convergence
rate is much slower. However, we should remember that in Section 2.3 we have seen, that
some nonsmooth problems can be solved very efficiently, provided that we manage to handle
their structure.

3.2.2 Main lemma

At this moment we are interested in the following problem:

min{f(x) | x ∈ Q}, (3.2.3)

where Q is a closed convex set, and f is a function convex on Rn. We are going to study
some methods for solving this problem, which use the subgradients g(x) of the objective
function. As compared with the smooth problem, our goal now is much more complicated.
Indeed, even in the simplest situation, when Q ≡ Rn, the subgradient seems to be a poor
replacement for the gradient of smooth function. For example, we cannot be sure now that
the direction −g(x) decreases the value of the objective function. We also cannot expect
that g(x) → 0 as x approaches the solution of our problem, etc.

Fortunately, there is one property of subgradients, which makes our goal reachable. We
have proved this property in Corollary 3.1.4: at any x ∈ Q the following inequality holds:

〈g(x), x− x∗〉 ≥ 0. (3.2.4)

This simple inequality leads to two consequences, which give the life to all nonsmooth min-
imization methods. Namely:

• The direction −g(x) decreases the distance between x and x∗.

• Inequality (3.2.4) cuts Rn on two half-spaces. Only one of them contains x∗.

In order to develop the nonsmooth minimization methods, we have to forget about re-
laxation and approximation. There is another concept, underlying all these schemes. That
is the concept of localization. However, to go forward with this concept, we have to develop
some special technique, which allows to estimate a quality of current point as an approximate
solution to the problem (3.2.3). That is the main goal of this section.

Let us fix some x̄ ∈ Rn. For x ∈ Rn with g(x) 6= 0 define

vf (x̄, x) =
1

‖ g(x) ‖〈g(x), x− x̄〉.
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If g(x) = 0, then define vf (x̄; x) = 0. Clearly, vf (x̄, x) ≤‖ x− x̄ ‖.
The values vf (x̄, x) have some natural geometric interpretation. Let consider a point x

such that g(x) 6= 0 and 〈g(x), x−x̄〉 ≥ 0. Let us look at the point y = x̄+vf (x)g(x)/ ‖ g(x) ‖.
Then

〈g(x), x− y〉 = 〈g(x), x− x̄〉 − vf (x̄, x) ‖ g(x) ‖= 0

and ‖ y − x̄ ‖= vf (x̄, x). Thus, vf (x̄, x) is the distance from the point x̄ to the hyperplane
{y : 〈g(x), x− y〉 = 0}.

Let us introduce a function, which measures the variation of function f with respect to
the point x̄. For t ≥ 0 define

ωf (x̄; t) = max{f(x)− f(x̄) | ‖ x− x̄ ‖≤ t}.
If t < 0, we set ωf (x̄; t) = 0.

Clearly, the function ωf possess the following properties:

• ωf (x̄; 0) = 0 for all t ≤ 0.

• ωf (x̄; t) is a non-decreasing function of t, t ∈ R1.

• f(x)− f(x̄) ≤ ωf (x̄; ‖ x− x∗ ‖).
It is important, that the last inequality can be strengthen.

Lemma 3.2.1 For any x ∈ Rn we have:

f(x)− f(x̄) ≤ ωf (vf (x̄; x)). (3.2.5)

If f(x) is Lipshitz continuous on B2(x̄, R) with some constant M then

f(x)− f(x̄) ≤ M(vf (x̄; x))+. (3.2.6)

for all x ∈ Rn such that vf (x̄; x) ≤ R.

Proof:
If 〈g(x), x− x̄〉 ≤ 0, Then f(x̄) ≥ f(x)+ 〈g(x), x̄−x〉 ≥ f(x). This implies that vf (x̄; x) ≤ 0.
Hence, ωf (vf (x̄; x)) = 0 and (3.2.5) holds.

Let 〈g(x), x− x̄〉 > 0. For

y =
1

‖ g(x) ‖(x̄ + vf (x̄; x)g(x))

we have 〈g(x), y−x̄〉 = 0 and ‖ y−x̄ ‖= vf (x̄; x). Therefore f(y) ≥ f(x)+〈g(x), y−x〉 = f(x),
and

f(x)− f(x̄) ≤ f(y)− f(x̄) ≤ ωf (‖ y − x̄ ‖) = ωf (vf (x̄; x)).

If f is Lipshitz continuous on B2(x̄, R) and 0 ≤ vf (x̄; x) ≤ R, then y ∈ B2(x̄, R). Hence,

f(x)− f(x̄) ≤ f(y)− f(x̄) ≤ M ‖ y − x̄ ‖= Mvf (x̄; x). 2

Let us fix some x∗, a solution to the problem (3.2.3). The values vf (x
∗; x) allows to

describe the quality of the localization sets.
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Definition 3.2.1 Let {xi}∞i=0 be a sequence in Q. Define

Sk = {x ∈ Q | 〈g(xi), xi − x〉 ≥ 0, i = 0 . . . k}.

We call this set the localization set of problem (3.2.3) generated by the sequence {xi}∞i=0.

Note that in view of inequality (3.2.4), for all k ≥ 0 we have x∗ ∈ Sk.
Denote

vi = vf (x
∗; xi) (≥ 0), v∗k = min

0≤i≤k
vi.

Thus,
v∗k = max{r | 〈g(xi), xi − x〉 ≥ 0 ∀x ∈ B2(x

∗, r), i = 0 . . . k}.
Lemma 3.2.2 Let f ∗k = min

0≤i≤k
f(xi). Then f ∗k − f ∗ ≤ ωf (v

∗
k).

Proof:
Using Lemma 3.2.1, we have:

ωf (v
∗
k) = min

0≤i≤k
ωf (vi) ≥ min

0≤i≤k
[f(xi)− f ∗] = f ∗k − f ∗. 2

3.2.3 Subgradient Method

Now we are ready to analyze the behavior of some minimization schemes, as applied to the
problem

min{f(x) | x ∈ Q}, (3.2.7)

where f is a function convex on Rn and Q is a simple closed convex set. The term “simple”
means that with this set we can solve explicitly some simple minimization problems. In
accordance to the goal of this section, we have to be able to find a projection of any point
on Q in a reasonable cheap way.

We assume that the problem (3.2.7) is equipped by a first-order oracle, which provides
us with the value of the objective function f(x̄) and with some subgradient g(x̄) of f at any
test point x̄.

As usual, we try first a kind of gradient method. Note, that for nonsmooth problems, the
norm of the subgradient, ‖ g(x) ‖ is not very informative. Therefore in the gradient scheme
we use the normalized directions g(x̄)/ ‖ g(x̄) ‖.

0. Choose x0 ∈ Q and a sequence {hk}∞k=0 such that hk ≥ 0 and hk → 0.

1. kth iteration (k ≥ 0).

Compute f(xk), g(xk) and set

xk+1 = πQ

(
xk − hk

g(xk)

‖ g(xk) ‖

)
. (3.2.8)

Let us estimate the rate of convergence of this scheme.
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Theorem 3.2.2 Let f be Lipshitz continuous on the ball B2(x
∗, R) with the constant M and

‖ x0 − x∗ ‖≤ R. Then

f ∗k − f ∗ ≤ M
R2 +

k∑
i=0

h2
i

2
k∑

i=0
hi

. (3.2.9)

Proof:
Denote ri =‖ xi − x∗ ‖. Then, in view of Lemma 3.1.5, we have:

r2
i+1 =

∥∥∥∥∥πQ

(
xi − hi

g(xi)

‖ g(xi) ‖

)
− x∗

∥∥∥∥∥
2

≤
∥∥∥∥∥xi − hi

g(xi)

‖ g(xi) ‖ − x∗
∥∥∥∥∥
2

= r2
i − 2hivi + h2

i .

Summurazing these inequalities for i = 0 . . . k we get:

r2
0 +

k∑
i=0

h2
i = 2

k∑
i=0

hivi + r2
k+1 ≥ 2v∗k

k∑
i=0

hi.

Thus,

v∗k ≤
R2 +

k∑
i=0

h2
i

2
k∑

i=0
hi

.

It remains to use Lemma 3.2.2. 2

Thus, the above theorem demonstrates that the rate of convergence of the subgradient
method (3.2.8) depends on the bahavior of the values

∆k =
R2 +

k∑
i=0

h2
i

2
k∑

i=0
hi

.

We can easily see that ∆k → 0 if the series
∞∑
i=0

hi diverges. However, let us try to choose hk

in an optimal way.
Let us assume that we have to perform a fixed number of steps N of the gradient method.

Then, minimizing ∆k as a function of {hk}N
k=0, we find that the optimal strategy is as follows:2

hi =
R√

N + 1
, i = 0 . . . N. (3.2.10)

In this case ∆N = R√
N+1

and we obtain the the following rate of convergence:

f ∗k − f ∗ ≤ MR√
N + 1

.

Comparing this result with the lower bound of Theorem 3.2.1, we conclude:

2We can see that ∆k is a convex function of {hi} from the Example 3.1.2(3).
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The subgradient method (3.2.8), (3.2.10) is optimal for the problem (3.2.7) uni-
formly in the dimension n.

If we don’t want to fix the number of iteration apriori, we can choose

hi =
r√

i + 1
, i = 0, . . . .

Then it is easy to see that ∆k is proportional to

R2 + r ln(k + 1)

2r
√

k + 1
,

and we can classify the rate of convergence of this scheme as sub-optimal rate.
Thus, the simplest method we have tried for the problem 3.2.3) appears to be optimal.

In general, this indicates that the problems of our class are too complicated to be solved
efficiently. However, we should remember, that our conclusion is valid uniformly in the
dimension of the problem. We will see that the dimension factor, taken into account in a
proper way, results in much more efficient schemes.

3.2.4 Minimization with functional constraints

Let us denonstrate how the subgradient method can be applied to a constrained minimization
problem with functional constraints. Consider this problem in the following form:

min{f(x) | x ∈ Q, fj(x) ≤ 0, i = 1 . . . m}, (3.2.11)

where the functions f and fj are convex on Rn and Q is a simple bounded closed convex set:

‖ x− y ‖≤ R, x, y ∈ Q.

Let us introduce a composite constraint f̄(x) =
(

max
1≤j≤m

fj(x)
)

+

. Then our problem

becomes as follows:
min{f(x) | x ∈ Q, f̄(x) ≤ 0}. (3.2.12)

Note that we can easily compute the subgradient ḡ(x) of the function f̄ , provided that we
can do so for functions fj (see Lemma 3.1.10).

Let us fix some x∗, a solution to (3.2.11). Note that f̄(x∗) = 0 and vf̄ (x
∗; x) ≥ 0 for all

x ∈ Rn. Therefore, in view of Lemma 3.2.1 we have:

f̄(x) ≤ ωf̄ (x
∗; vf̄ (x

∗; x)).

If fj are Lipshitz continuous on Q with constant M then for any x from Rn we have the
following estimate:

f̄(x) ≤ M · vf̄ (x
∗; x).

Let us write out a subgradient minimization scheme for the constrained minimization
problem (3.2.12). In this scheme we assume that we know an estimate R for the diameter
of the set Q: diam Q ≤ R.
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0. Choose x0 ∈ Q and the sequence {hk}∞k=0: hk = R√
k+0.5

.

1. kth iteration (k ≥ 0).

a). Compute f(xk), g(xk), f̄(xk), ḡ(xk) and set

pk =





g(xk), if f̄(xk) <‖ ḡ(xk) ‖ hk, (A),

ḡ(xk), if f̄(xk) ≥‖ ḡ(xk) ‖ hk, (B).

b). Set

xk+1 = πQ

(
xk − hk

pk

‖ pk ‖

)
. (3.2.13)

2

Let estimate the rate of convergence of this scheme.

Theorem 3.2.3 Let f be Lipshitz continuous on B2(x
∗, R) with constant M1 and

M2 = max
1≤j≤m

{‖ g ‖: g ∈ ∂fj(x), x ∈ B2(x
∗, R)}.

Then for any k ≥ 3 there exists a number i′, 0 ≤ i′ ≤ k, such that

f(xi′)− f ∗ ≤
√

3M1R√
k − 1.5

, f̄(xi′) ≤
√

3M2R√
k − 1.5

.

Proof:
Note that if the direction pk is chosen in accordance to the rule (B), we have:

‖ ḡ(xk) ‖ hk ≤ f̄(xk) ≤ 〈ḡ(xk), xk − x∗〉.
Therefore, in this case vf̄ (x

∗; xk) ≥ hk.

Let k′ =
]

k
3

[
and Ik = {i ∈ [k′ . . . k] : pi = g(xi)}. Denote

ri =‖ xi − x∗ ‖, vi = vf (x
∗; xi), v̄i = vf̄ (x

∗; xi).

Then for all i, k′ ≤ i ≤ k, we have:

if i ∈ Ik then r2
i+1 ≤ r2

i − 2hivi + h2
i ,

if i /∈ Ik then r2
i+1 ≤ r2

i − 2hiv̄i + h2
i .

Summarizing these inequalities for i ∈ [k′ . . . k], we get:

r2
k′ +

k∑

i=k′
h2

i ≥ r2
k+1 + 2

∑

i∈Ik

hivi + 2
∑

i/∈Ik

hiv̄i.
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Recall that for i /∈ Ik we have v̄i ≥ hi (Case (B)).
Assume that vi ≥ hi for all i ∈ Ik. Then

1 ≥ 1

R2

k∑

i=k′
h2

i =
k∑

i=k′

1

i + 0.5
≥

k+1∫

k′

dτ

τ + 0.5
= ln

2k + 3

2k′ + 1
≥ ln 3.

That is a contradiction. Thus, Ik 6= ∅ and there exists some i′ ∈ Ik such that vi′ < hi′ .
Clearly, for this number we have vi′ ≤ hk′ , and, consequently, (vi′)+ ≤ hk′ .

Thus, we conclude that f(xi′)−f ∗ ≤ M1hk′ (see Lemma 3.2.1) and, since i′ ∈ Ik we have
also the following:

f̄(xi′) ≤‖ ḡ(xi′) ‖ hk′ ≤ M2hk′ .

It remains to note that k′ ≥ k
3
− 1 and therefore hk′ ≤

√
3R√

k−1.5
. 2

Comparing the result of the theorem with the lower complexity bounds of Theorem
3.2.1, we see that the scheme (3.2.13) has the optimal rate of convergence. Recall, that
the lower complexity bounds were obtained for the unconstrained minimization problem.
Thus, iur result proves, that from the viewpoint of analytical complexity, the general convex
unconstrained minimization problems are not easier than the constrained ones.

3.2.5 Complexity Bounds in Finite Dimension

Let us look at the unconstrained minimization problem again, assuming that its dimension
is relatively small. This means that our computational resources allow us to perform the
number of iterations of a minimization method, proportional to the dimension of the space
of variables. What will be the lower complexity bounds in this case?

In this section we will obtain the finite-dimensional lower complexity bounds for a prob-
lems, which is closely related to the minimization problem. This is the feasibility problem:

Find x∗ ∈ Q, (3.2.14)

where Q is a convex set. We assume that for this proble we have an oracle, which provides
us with the following information abou the test point x̄ ∈ Rn:

• Either it repotrts that x̄ ∈ Q.

• Or, it returns a vector ḡ, separating x̄ from Q:

〈ḡ, x̄− x〉 ≥ 0 ∀x ∈ Q.

To estimate the complexity of this problem, we introduce the following assumption.

Assumption 3.2.1 There exists a point x∗ ∈ Q such that B2(x
∗, ε) ⊆ Q for some ε > 0.
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For example, if we know the optimal value f ∗ of our problem (3.2.3), we can treat this
problem as a feasibility problem with

Q̄ = {(t, x) ∈ Rn+1 | t ≥ f(x), t ≤ f ∗ + ε̄ x ∈ Q}.

The relation between the accuracy parameters ε̄ and ε in (3.2.1) can be easily obtained,
assuming that the function f is Lipshitz continuous. We leave this reasoning as an exercise
for the reader.

Let us describe now the resisting oracle for the problem (3.2.14). It forms a sequence of
boxes {Bk}∞k=0, defined by their lower and upper bounds.

Bk = {x ∈ Rn | ak ≤ x ≤ bk}.

For each box Bk, k ≥ 0, it computes also its center ck = 1
2
(ak + bk). For boxes Bk, k ≥ 1, the

oracle creates the individual separating vector gk. This is always co-linear to a coordinate
vector with a certain number.

In the scheme below we use also two counters:

• m is the number of generated boxes.

• i is the active coordinate number.
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Initialization: a0 := −Re; b0 := Re; m := 0; i := 1.

Input: x ∈ Rn.

If x /∈ B0 then Return a separator of x from B0.

else 1.Find the maximal k ∈ [0 . . .m] : x ∈ Bk.

2 . If k < m then Return gk;

else {Generate a new box}

If x(i) ≥ c(i)
m then

bm+1 := bm + (c(i)
m − b(i)

m )ei; am+1 := am; gm := ei;

else

am+1 := am + (c(i)
m − a(i)

m )ei; bm+1 := bm; gm := −ei;

endif;

m := m + 1;

i := i + 1; If i > n then i := 1;

Return gm;
endif

endif

This algorithmic scheme implements a very simple strategy. Note, that next box Bm+1

is always a half of the last box Bm. The box Bm is divided on two parts, by a hyperplane,
which passes through its center and which corresponds to the active coordinate number i.
Depending on the part of the box Bm we have the test point x, we choose the sign of the
separator vector gm+1 = ±ei. After the creating the new box Bm+1 the index i is incearsed
by one. If this value exceeds n, we return again to the value i = 1. Thus, the sequence of
boxes {Bk} possess two important properties:

• voln Bk+1 = 1
2
voln Bk.

• For any k ≥ 0 we have: bk+n − ak+n = 1
2
(bk − ak).

Note also that the number of the generated boxes does not exceed the number of calls of the
oracle.
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Lemma 3.2.3 For all k ≥ 0 we have the inclusion:

B2(ck, rk) ⊂ Bk, with rk =
R

2

(
1

2

)− k
n

. (3.2.15)

Proof:

Indeed, for all k ∈ [0 . . . n− 1] we have

Bk ⊃ Bn = {x | cn − 1
2
Re ≤ x ≤ cn + 1

2
Re} ⊃ B2(cn, 1

2
R).

Therefore, for such k we have Bk ⊃ B2(ck,
1
2
R) and (3.2.15) holds. Further, let k = nl + p

with some p ∈ [0 . . . n− 1]. Since

bk − ak =
(

1
2

)−l
(bp − ap),

we conclude that

Bk ⊃ B2

(
ck,

1
2
R

(
1
2

)−l
)

.

It remains to note that rk ≤ 1
2
R

(
1
2

)−l
. 2

THe above lemma immedeately leads to the following complexity result.

Theorem 3.2.4 Consider the class of feasibility problems (3.2.14), which satisfy Assump-
tion 3.2.1 and with feasible sets Q ⊆ B∞(0, R). The lower analytical complexity bound for
this class is n ln R

2ε
calls of the oracle.

Proof:

Indeed, we have already seen thatthe number of generated boxes does not exceed the number
of calls of the oracle. Moreover, in view of Lemma 3.2.3, after k iterations the last box
contains the ball B2(cmk

, rk). 2

The lower complexity bound for the minimization problem (3.2.3) can be obtained in a
similar way. However, the corresponding reasoning is rather technical. Therefore we present
here only the conclusion.

Theorem 3.2.5 The lower bound for the analytical complexity of the problem class formed
by minimization problems (3.2.3) with Q ⊆ B∞(0, R) and f ∈ F0,0

M (B∞(0, R)), is n ln MR
8ε

calls of the oracle. 2
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3.2.6 Cutting Plane Schemes

Let us look now at the following constrained minimization problem:

min{f(x) | x ∈ Q}, (3.2.16)

where f is a function convex on Rn and Q is a bounded closed convex set such that

int Q 6= ∅, diam Q = D < ∞.

Let us assume now that Q is not simple and that our problem is equipped by a separating
oracle. At any test point x̄ ∈ Rn this oracle returns a vector g which is:

• a subgradient of f at x̄, if x ∈ Q,

• a separator of x̄ from Q, if x /∈ Q.

An important example of such problem is a constrained minimization problem with func-
tional constraints (3.2.11). We have seen that this problem can be rewritten as a problem
with single functional constraint (see (3.2.12)), defining the feasible set

Q = {x ∈ Rn | f̄(x) ≤ 0}.

In this case, for x /∈ Q the oracle have to provide us with any subradient ḡ ∈ ∂f̄(x). Clearly,
ḡ separates x from Q (see Theorem 3.1.16).

Let us present the main property of the localization sets in finite dimension.
Consider a sequence X ≡ {xi}∞i=0 belonging to the set Q. Recall, that the localization

sets, generated by this sequence, are defined as follows:

S0(X) = Q,

Sk+1(X) = {x ∈ Sk(X) | 〈g(xk), xk − x〉 ≥ 0}.

Clearly, for any k ≥ 0 we have x∗ ∈ Sk. Denote

vi = vf (x
∗; xi) (≥ 0), v∗k = min

0≤i≤k
vi.

Theorem 3.2.6 For any k ≥ 0 we have:

v∗k ≤ D

[
voln Sk(X)

voln Q

] 1
n

.

Proof:
Let us consider the coefficient α = v∗k/D (≤ 1). Since Q ⊆ B2(x

∗, D) we have the following
inclusion:

(1− α)x∗ + αQ ⊆ (1− α)x∗ + αB2(x
∗, D) = B2(x

∗, v∗k).
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Since Q is convex, we conclude that

(1− α)x∗ + αQ ≡ [(1− α)x∗ + αQ]
⋂

Q ⊆ B2(x
∗, v∗k)

⋂
Q ⊆ Sk(X).

Therefore voln Sk(X) ≥ voln [(1− α)x∗ + αQ] = αnvoln Q. 2

Since the set Q is rather complicated, usually the sets Sk(X) cannot be treated explicitly.
Insted, we can update some simple upper approximations of these sets. The process of
generating such approximations can be described by the following cutting plane scheme.

General Cutting Plane Scheme (3.2.17)

0. Choose a bounded set E0 ⊇ Q.

1. kth iteration (k ≥ 0).

a). Choose yk ∈ Ek

b). If yk ∈ Q then compute f(yk), g(yk). If yk /∈ Q then compute ḡ(yk), which separates
yk from Q.

c). Set

gk =





g(yk), if yk ∈ Q,

ḡ(yk), if yk /∈ Q.

d). Choose Ek+1 ⊇ {x ∈ Ek | 〈gk, yk − x〉 ≥ 0}. 2

Let us estimate the peformance of the above process. Consider the sequence Y = {yk}∞k=0,
involved in this scheme. Denote by X the subsequence of feasible points in the sequence Y :
X = Y

⋂
Q. Let us introduce the counter

i(k) = number of points yj, 0 ≤ j < k, such that yj ∈ Q.

Thus, if i(k) > 0 then X 6= ∅.
Lemma 3.2.4 For any k ≥ 0 we have: Si(k) ⊆ Ek.

Proof:
Indeed, if i(0) = 0 then S0 = Q ⊆ E0. Let us assume that Si(k) ⊆ Ek for some k ≥ 0. Then,
at the next iteration there are two possibilities:

a). i(k + 1) = i(k). This happens if and only if yk /∈ Q. Then

Ek+1 ⊇ {x ∈ Ek | 〈ḡ(yk), yk − x〉 ≥ 0} ⊇ {x ∈ Si(k+1) | 〈ḡ(yk), yk − x〉 ≥ 0} = Si(k+1)

since Si(k+1) ⊆ Q and ḡ(yk) separates yk from Q.
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b). i(k + 1) = i(k) + 1. In this case yk ∈ Q. Then

Ek+1 ⊇ {x ∈ Ek | 〈g(yk), yk − x〉 ≥ 0} ⊇ {x ∈ Si(k) | 〈g(yk), yk − x〉 ≥ 0} = Si(k)+1

since yk = xi(k). 2

The above results immedeately leads to the following important conclusion.

Corollary 3.2.1 1. For any k such that i(k) > 0 we have:

v∗i(k)(X) ≤ D

[
voln Si(k)(X)

voln Q

] 1
n

≤ D

[
voln Ek

voln Q

] 1
n

.

2. If voln Ek < voln Q then i(k) > 0.

Proof:
We have already prove the first statement and the second one follows from the inclusion
Q = S0 = Si(k) ⊆ Ek, which is valid for all k such that i(k) = 0. 2

Thus, if we manage to ensure voln Ek → 0, then we obtain a convergent scheme. More-
over, the rate of decrease of the volume automatically defines the rate of the convergence of
the method. Clearly, we should try to decrease voln Ek as fast as possible.

Historically, the first nonsmooth minimization method, implementing the idea of cutting
planes, was the center of gravity method. It is based on the following geometrical fact.

Consider a bounded convex set S ⊂ Rn, int S 6= ∅. Define the center of gravity of this
set as follows:

cg(S) =
1

voln S

∫

S

xdx.

The following result demonstrates that any cut passing through the center of gravity divides
the set on two proprtional pieces.

Lemma 3.2.5 Let g be a direction in Rn. Define S+ = {x ∈ S | 〈g, cg(S)− x〉 ≥ 0}. Then

voln S+

voln S
≤ 1− 1

e
.

(We accept this result without proof.) 2

This observation naturally leads to the following minimization scheme.

0. Set S0 = Q.

1. kth iteration (k ≥ 0).

a). Choose xk = cg(Sk) and compute f(xk), g(xk).

b). Set Sk+1 = {x ∈ Sk | 〈g(xk), xk − x〉 ≥ 0}. 2
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Let us present the result on the rate of convergence of this method. Denote f ∗k =
min

0≤j≤k
f(xj).

Theorem 3.2.7 If f is Lipshitz continuous on the ball B2(x
∗, D) with some constant M ,

then for any k ≥ 0 we have:

f ∗k − f ∗ ≤ MD
(
1− 1

e

)− k
n

.

Proof:
The statement follows from Lemma 3.2.2, Theorem 3.2.6 and Lemma 3.2.5. 2

Comparing this result with the lower complexity bound of Theorem 3.2.5, we see that
the certer-of-gravity is optimal in finite dimension. Its rate of convergence does not depend
on any individual characteristics of our problem like condition number, etc. However, we
should accept that this method is absolutely impractical, since the computation of the center
of gravity in multi-dimensional space is a more difficult problem than our initial one.

Let us look at another method, that uses the possibility of approximation of the local-
ization sets. This method is based on the following geometrical observation.

Let H be a positive definite symmetric n× n matrix. Consider the following ellipsoid:

E(H, x̄) = {x ∈ Rn | 〈H−1(x− x̄), x− x̄〉 ≤ 1}.
Let us choose a direction g ∈ Rn and consider a half of the above ellipsoid, cutted by this
direction:

E+ = {x ∈ E(H, x̄) | 〈g, x̄− x〉 ≥ 0}.
It turns out that this set belongs to another ellipsoid, which volume is strictly less than the
volume of E(H, x̄).

Lemma 3.2.6 Denote

x̄+ = x̄− 1

n + 1
· Hg

〈Hg, g〉1/2
,

H+ =
n2

n2 − 1

(
H − 2

n + 1
· HggT H

〈Hg, g〉

)
.

Then E+ ⊂ E(H+, x̄+) and

voln E(H+, x̄+) ≤
(

1− 1

(n + 1)2

)n
2

voln E(H, x̄).

∗Proof:
Denote G = H−1 and G+ = H−1

+ . It is clear that

G+ =
n2 − 1

n2

(
G +

2

n− 1
· ggT

〈Hg, g〉

)
.
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Without loss of generality we can assume that x̄ = 0 and 〈Hg, g〉 = 1. Suppose x ∈ E+.
Note that x̄+ = − 1

n+1
Hg. Therefore

‖ x− x̄+ ‖2
G+

= n2−1
n2

(
‖ x− x̄+ ‖2

G + 2
n−1

〈g, x− x̄+〉2
)
,

‖ x− x̄+ ‖2
G = ‖ x ‖2

G + 2
n+1

〈g, x〉+ 1
(n+1)2

,

〈g, x− x̄+〉2 = 〈g, x〉2 + 2
n+1

〈g, x〉+ 1
(n+1)2

.

Putting all things together, we obtain:

‖ x− x̄+ ‖2
G+

=
n2 − 1

n2

(
‖ x ‖2

G +
2

n− 1
〈g, x〉2 +

2

n− 1
〈g, x〉+

1

n2 − 1

)
.

Note that 〈g, x〉 ≤ 0 and ‖ x ‖G≤ 1. Therefore

〈g, x〉2 + 〈g, x〉 = 〈g, x〉(1 + 〈g, x〉) ≤ 0.

Hence,

‖ x− x̄+ ‖2
G+
≤ n2 − 1

n2

(
‖ x ‖2

G +
1

n2 − 1

)
≤ 1.

Thus, we have proved that E+ ⊂ E(H+, x̄+).
Let us estimate the volume of E(H+, x̄+).

voln E(H+,x̄+)
voln E(H,x̄)

=
[

det H+

det H

]1/2
=

[(
n2

n2−1

)n
n−1
n+1

]1/2
=

[
n2

n2−1

(
1− 2

n+1

) 1
n

]n
2

≤
[

n2

n2−1

(
1− 2

n(n+1)

)]n
2 =

[
n2(n2+n−2)

n(n−1)(n+1)2

]n
2 =

[
1− 1

(n+1)2

]n
2 .

2

It turns out that the ellipsoid E(H+, x̄+) is the ellipsoid of the minimal volume containing
the half of the initial ellipsoid E+.

Our observations can be implemented in the following algorithmic scheme of the ellipsoid
method.

0. Choose y0 ∈ Rn and R > 0 such that B2(y0, R) ⊇ Q. Set H0 = R2 · In.

1. kth iteration (k ≥ 0).

a). If yk ∈ Q then compute f(yk) and g(yk). If yk /∈ Q then compute ḡ(yk), which
separates yk from Q. Set

gk =





g(yk), if yk ∈ Q,

ḡ(yk), if yk /∈ Q.
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b). Set
yk+1 = yk − 1

n+1
· Hkgk

〈Hkgk,gk〉1/2 ,

Hk+1 = n2

n2−1

(
Hk − 2

n+1
· HkgkgT

k Hk

〈Hkgk,gk〉

)
.

2

This method is a particular case of the general scheme (3.2.17) with

Ek = {x ∈ Rn | 〈H−1
k (x− xk), x− xk〉 ≤ 1}

and yk being the center of this ellipsoid.
Let us present the efficiency estimate of the ellipsoid method. Denote Y = {yk}∞k=0 and

let X be a feasible subsequence of the sequence Y : X = Y
⋂

Q. Denote f ∗k = min
0≤j≤k

f(xj).

Theorem 3.2.8 Let f be Lipshitz continuous on the ball B2(x
∗, R) with some constant M .

Then for i(k) > 0 we have:

f ∗i(k) − f ∗ ≤ MR

(
1− 1

(n + 1)2

) k
2

·
[
voln B0(x0, R)

voln Q

] 1
n

.

Proof:
The proof follows from Lemma 3.2.2, Corollary 3.2.1 and Lemma 3.2.6. 2

Note that we need some additional assumptions to guarantee X 6= ∅. Assume that there
exists some ρ > 0 and x̄ ∈ Q such that

B2(x̄, ρ) ⊆ Q. (3.2.18)

Then [
voln Ek

voln Q

] 1
n

≤
(

1− 1

(n + 1)2

) k
2

[
voln B2(x0, R)

voln Q

] 1
n

≤ 1

ρ
e
− k

2(n+1)2 R.

In view of Corollary 3.2.1, this implies that i(k) > 0 for all

k > 2(n + 1)2 ln
R

ρ
.

If i(k) > 0 then

f ∗i(k) − f ∗ ≤ 1

ρ
MR2 · e−

k
2(n+1)2 .

In order to ensure the assumption (3.2.18) for a constrained minimization problem with
functional constraints, it is enough to assume that all the constraints are Lipshitz continuous
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and there is a feasble point, at which all functional constraints are strictly negative (Slater
condition). We leave the details of the justification as an exercise for the reader.

Let us discuss now the complexity of the ellipsoid method. Note that each iteration of
this method is rather cheap; it takes only O(n2) arithmetic operations. On the other hand,
this method needs

2(n + 1)2 ln
MR2

ρε

calls of oracle to generate an ε-solution of problem (3.2.16), satisfying the assumption
(3.2.18). This efficiency estimate is not optimal (see T.3.2.5), but it has polynomial de-
pendedce on ln 1

ε
and the polynomial dependedce on the logarithms of the class parameters

(M , R, ρ). For problem classes, in which the oracle has a polynomial complexity, such
algorithms are called (weakly) polynomial.

To conclude this section, we should mention that there are several methods, which work
with the localization sets in the form of a polytope:

Ek = {x ∈ Rn | 〈aj, x〉 ≤ bj, j = 1 . . . mk}.

Among those, the most important methods are

• Inscribed Ellipsoid Method. The point yk in this scheme is chosen as follows:

yk = Center of the maximal ellipsoid Wk : Wk ⊂ Ek.

• Analytic Center Method. In this method the point yk is chosen as the minimum of the
analytic barrier

Fk(x) = −
mk∑

j=1

ln(bj − 〈aj, x〉).

• Volumetric Center Method. This is also a barrier-type scheme. The point yk is chosen
as the minimum of the volumetrictic barrier

Vk(x) = ln det F ′′
k (x),

where Fk(x) is the analytic barrier for the set Ek.

All these methods are polynomial with the complexity

n
(
ln

1

ε

)p

,

where p is either one or two. However, the complexity of each iteration in these methods
is much larger (n3 – n4 arithmetic operations). We will see that the test point yk can be
computed for these schemes by the Interior-Point Methods, which we will study in the next
chapter.
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3.3 Methods with Complete Data

(Model of Nonsmooth Function; Kelly Method; Idea of Level Method; Unconstrained Mini-
mization; Efficiency Estimates; Problems with functional constraints.)

3.3.1 Model of nonsmooth function

In the previous section we have studied several methods for solving the following problem:

min
x∈Q

f(x), (3.3.1)

where f is a Lipshitz continuous convex function and Q is a closed convex set. We have
seen that the optimal method for problem (3.3.1) is the subgradient method. Note, that this
conclusion is valid for the whole class of Lipshitz continuous functions. However, when we
are going to minimize a concrete function from that class, we can hope that our function
is not so bad. Therefore, we could expect that the real performance of our minimization
method will be much better than the theoretical bound, derived from a worst-case analysis.
Unfortunately, as far as the subgradient method is concerned, these expectations are too
optimistic. The scheme of the subgradient method is very strict and in general it cannot
converge faster than in theory. Let us support this declaration by an example.

Example 3.3.1 Consider a minimization problem with function of one variable:

f(x) =| x |, → min
x∈R1

.

Let us choose x0 = 1 and consider the following process:

xk+1 =





xk − 2√
k+1

, if xk > 0,

xk + 2√
k+1

, if xk < 0.

Clearly, that is a subgradient method with the optimal step-size strategy (see (3.2.8)).
Note that if during the process sometimes we get a point xk very close to the optimal

point, the next step will push us away from the optimum on the distance 2√
k+1

and it will

take O(
√

k) iterations to get back in the neighborhood of the point xk. 2

It can be also shown that the ellipsoid method, presented in the previous section, inherits
the above drawback of the subgradient scheme. In practice it works more or less in accordance
to its theoretical bound even it is applied to the simplest functions like ‖ x ‖2.

In this section we will discuss the algorithmic schemes, which are more flexible, then the
subgradient and the ellipsoid method. This schemes are based on the notion of the model of
nonsmooth function.
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Definition 3.3.1 Let X = {xk}∞k=0 be a sequence in Q. Denote

f̂k(X; x) = max
0≤i≤k

[f(xi) + 〈g(xi), x− xi〉],

where g(xi) are some subgradients of f at xi.
The function f̂k(X; x) is called the model of the convex function f .

Note that fk(X; x) is a piece-wise linear function of x. In view of inequality (3.1.10) we
always have

f(x) ≥ f̂k(X; x)

for all x ∈ Rn. However, at all test points xi, 0 ≤ i ≤ k, we have

f(xi) = f̂k(X; xi), g(xi) ∈ ∂f̂k(X; xi).

The next model is always better than the previous one:

f̂k+1(X; x) ≥ f̂k(X; x)

for all x ∈ Rn.

3.3.2 Kelly method

The model f̂k(X; x) represents our complete information about function f , accumulated after
k calls of oracle. Therefore it seems natural to try to develop a minimization scheme, based
on this object. May be the most natural method of this type is as follows:

0). Choose x0 ∈ Q.

1). Find xk+1 ∈ Arg min
x∈Q

f̂k(X; x), k ≥ 0.
(3.3.2)

This scheme is called the Kelly method.
Intuitively, this scheme looks very attractive. Even the presence of a complicated aux-

iliary problem is not too disturbing, since it can be solved by LP-methods in finite time.
However, it turns out that this method cannot be recommended for practical applications.
And the main reason for that is its instability. Note that the solution of auxiliary problem in
(3.3.2) may be not unique. Moreover, the whole set Arg min

x∈Q
f̂k(X; x) can be unstable with

respect to arbitrary small variation of the data {f(xi), g(xi)}. This feature results in unsta-
ble practical behavior of the method. Moreover, this feature can be used for constructing an
example of a problem, in which the Kelly method has hopeless lower complexity bounds.

Example 3.3.2 Consider the problem (3.3.1) with

f(y, x) = max{| y |, ‖ x ‖2}, y ∈ R1, x ∈ Rn,

Q = {z = (y, x) : y2+ ‖ x ‖2≤ 1}.
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Thus, the solution of this problem is z∗ = (y∗, x∗) = (0, 0), and the optimal value f ∗ = 0.
Denote Z∗

k = Arg min
z∈Q

f̂k(Z; z), the optimal set of the model f̂k(Z; z), and f̂ ∗k = f̂k(Z
∗
k), the

optimal value of the model.
Let us choose z0 = (1, 0). Then the initial model of the function f is f̂0(Z; z) = y.

Therefore, the first point, generated by the Kelly method is z1 = (−1, 0). Therefore, the
next model of the function f is as follows:

f̂1(Z; z) = max{y,−y} =| y | .

Clearly, f̂ ∗1 = 0. Note that f̂ ∗k+1 ≥ f̂ ∗k . On the other hand,

f̂ ∗k ≤ f(z∗) = 0.

Thus, for all consequent models with k ≥ 1 we will have f̂ ∗k = 0 and Z∗
k = (0, X∗

k), where

X∗
k = {x ∈ B2(0, 1) | ‖ xi ‖2 +〈2xi, x− xi〉 ≤ 0, i = 0, . . . , k}.

Let us estimate efficiency of the cuts for the set X∗
k . Since xk+1 can be an arbitrary point

from X∗
k , at the first stage of the method we can choose xi with the unit norms: ‖ xi ‖= 1.

Then the set X∗
k will be defined as follows:

X∗
k = {x ∈ B2(0, 1) | 〈xi, x〉 ≤ 1

2
, i = 0, . . . , k}.

We can do that up to the moment when the sphere

S2(0, 1) = {x ∈ Rn | ‖ x ‖= 1}

is not cutted. Note, that up to this moment we always have

f(zi) ≡ f(0, xi) = 1.

Let us use the following geometrical fact.

Let d be a direction in Rn, ‖ d ‖= 1. Consider the surface:

S(α) = {x ∈ Rn | ‖ x ‖= 1, 〈d, x〉 ≥ α},

where α ∈ [0, 1]. Denote v(α) = voln−1(S(α)). Then v(α)
v(0)

≤ [1− α2]
n−1

2 .

In our case the cuts are 〈xi, x〉 ≥ 1
2
. Therefore, we definitely cannot cut the sphere S2(0, 1)

less then with
[

2√
3

]n−1
cuts. Note that during these iterations we still have f(zi) = 1.

Since at the first stage of the process the cuts are 〈xi, x〉 ≥ 1
2
, for all k, 0 ≤ k ≤ N ≡[

2√
3

]n−1
, we have:

B2(0,
1
2
) ⊂ X∗

k .
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This means that after N iterations we can repeat our process with the ball B2(0,
1
2
), etc.

Note that f(0, x) = 1
4

for all x from B2(0,
1
2
).

Thus, we have proved the following lower estimate for the method (3.3.2):

f(xk)− f ∗ ≥
(

1

4

)k

[√
3

2

]n−1

.

In terms of complexity, this means that we cannot get an ε-solution of our problem less than
in

ln 1
ε

2 ln 2

[
2√
3

]n−1

calls of the oracle. Compare this lower bound with the upper complexity bounds of other
methods:

Ellipsoid method: n2 ln 1
ε
,

Optimal methods: n ln 1
ε
,

Gradient method: 1
ε2

.

2

3.3.3 Level Method

Let us demonstrate, how we can treat the models in a stable way. Denote

f ∗k = min
0≤i≤k

f(xi), f̂ ∗k = min
x∈Q

f̂k(X; x).

The first value is called the minimal value of the model, and the second one the record value
of the model. Clearly f̂ ∗k ≤ f ∗ ≤ f ∗k .

Let us choose some α ∈ (0, 1). Denote

lk(α) = (1− α)f̂ ∗k + αf ∗k .

Consider the sublevel set:

Lk(α) = {x ∈ Q | fk(x) ≤ lk(α)}.
Clearly, Lk(α) is a closed convex set.

Note that the set Lk(α) is of a certain interest for an optimization scheme. First, inside
this set clearly there is no test points of the current model. Second, this set is stable with
respect to a small variation of the data. Let us present a minimization scheme, which deals
directly with this sublevel set.

Level Method Scheme (3.3.3)
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0. Choose a point x0 ∈ Q, an accuracy ε > 0 and the level coefficient α ∈ (0, 1).

1. kth iteration (k ≥ 0).

a). Compute f̂ ∗k and f ∗k .

b). Terminate if f ∗k − f̂ ∗k ≤ ε.

c). Set xk+1 = πLk(α)(xk). 2

Note that in this scheme there are two rather expensive operations. First, we need to
compute the optimal value of the current model f̂ ∗k . If Q is a polytope, then this value can
be obtained from the following LP-problem:

min t,

s.t. f(xi) + 〈g(xi), x− xi〉 ≤ t, i = 0 . . . k,

x ∈ Q.

Second, we need to compute the projection πLk(α)(xk). If Q is a polytope, then this is an
QP-problem:

min ‖ x− xk ‖2,

s.t. f(xi) + 〈g(xi), x− xi〉 ≤ lk(α), i = 0 . . . k,

x ∈ Q.

Both of the problems can be solved either by the standard simplex-type methods, or by
Interior-Point methods.

Let us look at some properties of the Level Method. Recall, that the optimal values of
the model decrease, and the records values increase:

f̂ ∗k ≤ f̂ ∗k+1 ≤ f ∗ ≤ f ∗k+1 ≤ f ∗k .

Denote ∆k = [f̂ ∗k , f ∗k ] and δk = f ∗k − f̂ ∗k , the gap of the model f̂k(X; x). Then

∆k+1 ⊆ ∆k, δk+1 ≤ δk.

The next result is crucial in the analysis of the Level Method.

Lemma 3.3.1 Assume that for some p ≥ k we have δp ≥ (1−α)δk. Then for all i, k ≤ i ≤ p,

li(α) ≥ f̂ ∗p
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Proof:
Note that for such i we have δp ≥ (1− α)δk ≥ (1− α)δi. Therefore

li(α) = f ∗i − (1− α)δi ≥ f ∗p − (1− α)δi = f̂ ∗p + δp − (1− α)δi ≥ f̂ ∗p . 2

Let us show that the steps of the Level Method are large enough. Denote

Mf = max{‖ g ‖ | g ∈ ∂f(x), x ∈ Q}.

Lemma 3.3.2 For the sequence {xk} generated by the Level Method we have:

‖ xk+1 − xk ‖≥ (1− α)δk

Mf

.

Proof:
Indeed,

f(xk)− (1− α)δk ≥ f ∗k − (1− α)δk = lk(α) ≥ f̂k(xk+1)

≥ f(xk) + 〈g(xk), xk+1 − xk〉 ≥ f(xk)−Mf ‖ xk+1 − xk ‖ . 2

Finally, we need to show that the gap of the model is decreasing.

Lemma 3.3.3 Let Q in the problem (3.3.1) be bounded: diam Q ≤ D. If for some p ≥ k
we have δp ≥ (1− α)δk, then

p + 1− k ≤ M2
f D2

(1− α)2δ2
p

.

Proof:
Denote x∗k ∈ Arg min

x∈Q
f̂k(X; x). In view of Lemma 3.3.1 we have

f̂i(X; x∗p) ≤ f̂p(X; x∗p) = f̂ ∗p ≤ li(α)

for all i, k ≤ i ≤ p. Therefore, in view of Lemma 3.1.5 and Lemma 3.3.2 we obtain the
following:

‖ xi+1 − x∗p ‖2 ≤‖ xi − x∗p ‖2 − ‖ xi+1 − xi ‖2

≤‖ xi − x∗p ‖2 − (1−α)2δ2
i

M2
f

≤‖ xi − x∗p ‖2 − (1−α)2δ2
p

M2
f

.

Summarizing the inequalities in i = k, . . . , p we get:

(p + 1− k)
(1−α)2δ2

p

M2
f

≤‖ xk − x∗p ‖2≤ D2. 2

Note that the value p + 1− k is equal to the number of indices in the segment [k, p].
Now we can prove the efficiency estimate of the Level Method.
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Theorem 3.3.1 Let diam Q = D. Then the scheme of the Level Method terminates no
more than after

N =
M2

f D2

ε2α(1− α)2(2− α)

iterations. At this moment we have f ∗k − f ∗ ≤ ε.

Proof:
Assume that δk ≥ ε, 0 ≤ k ≤ N . Let us divide the indices on the groups in the decreasing
order:

{N, . . . , 0} = I(0)
⋃

I(2)
⋃

. . .
⋃

I(m),

such that
I(j) = [p(j), k(j)], p(j) ≥ k(j), j = 0, . . . ,m,

p(0) = N, p(j + 1) = k(j) + 1, k(m) = 0,

δk(j) ≤ 1
1−α

δp(j) < δk(j)+1 ≡ δp(j+1).

Clearly, for j ≥ 0 we have:

δp(j+1) ≥ δp(j)

1−α
≥ δp(0)

(1−α)j+1 ≥ ε
(1−α)j+1 .

In view of L.3.3.2, n(j) = p(j) + 1− k(j) is bounded:

n(j) ≤ M2
f D2

(1−α)2δ2
p(j)

≤ M2
f D2

ε2(1−α)2
(1− α)2j.

Therefore

N =
m∑

j=0
n(j) ≤ M2

f D2

ε2(1−α)2

m∑
j=0

(1− α)2j ≤ M2
f D2

ε2α(1−α)2(2−α)
.

2

Let us discuss the above efficiency estimate. Note that we can obtain the optimal value
of the level parameter α from the following maximization problem:

α(1− α)2(2− α) → max
α∈[0,1]

.

Its solution is α∗ = 1
2+
√

2
. Under this choice we have the following efficiency estimate of the

Level Method: N ≤ 4
ε2

M2
f D2. Comparing this result with Theorem 3.2.1 we see that the

Level Method is optimal uniformly in the dimension of the space. Note that the complexity
of this method in finite dimension is not known.

One of the advantages of this method is that the gap δk = f ∗k − f̂ ∗k provides us with the
exact estimate of the current accuracy. Usually, this gap converges to zero much faster than
in the worst case situation. For the most practical problems the accuracy ε = 10−4 − 10−5

is obtained after 3− 4n iterations.
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3.3.4 Constrained Minimization

Let us demonstrate, how we can use the models for solving the constrained minimization
problems. Consider the problem

min f(x),

s.t. fj(x) ≤ 0, j = 1, . . . , m,

x ∈ Q,

(3.3.4)

where Q is a bounded closed convex set, and functions f(x), fj(x) are Lipshitz continuous
on Q.

Let us rewrite this problem as a problem with a single functional constraint. Denote
f̄(x) = max

1≤j≤m
fj(x). Then we obtain the equivalent problem

min f(x),

s.t. f̄(x) ≤ 0,

x ∈ Q,

(3.3.5)

Note that f(x) and f̄(x) are convex and Lipshitz continuous. In this section we will try to
solve (3.3.5) using the models for both of them.

Let us define the corresponding models. Consider a sequence X = {xk}∞k=0. Denote

f̂k(X; x) = max
0≤j≤k

[f(xj) + 〈g(xj), x− xj〉] ≤ f(x),

f̌k(X; x) = max
0≤j≤k

[f̄(xj) + 〈ḡ(xj), x− xj〉] ≤ f̄(x),

where g(xj) ∈ ∂f(xj) and ḡ(xj) ∈ ∂f̄(xj).
Same as in Section 2.3.4, our scheme is based on the parametric function

f(t; x) = max{f(x)− t, f̄(x)},

f ∗(t) = min
x∈Q

f(t; x).

Recall that f ∗(t) is non-increasing in t. Moreover, let x∗ be a solution to (3.3.5) and t∗ =
f(x∗). Then t∗ is the smallest root of function f ∗(t).

Using the models for the objective function and the constraint, we can introduce a model
for the parametric function. Denote

fk(X; t, x) = max{f̂k(X; x)− t, f̌k(X; x)} ≤ f(t; x)

f̂ ∗k (X; t) = min
x∈Q

fk(X; t, x) ≤ f ∗(t).
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Again, f̂ ∗k (X; t) is non-increasing in t. It is clear that its smallest root t∗k(X) does not exceed
t∗.

We will need the following characterization of the root t∗k(X).

Lemma 3.3.4
t∗k(X) = min{f̂k(X; x) | f̌k(X; x) ≤ 0, x ∈ Q}.

Proof:
Denote x̂∗k the solution of the minimization problem in the right-hand side of the above
equation. And let t̂∗k = f̂k(X; x̂∗k). Then

f̂ ∗k (X; t̂∗k) ≤ max{f̂k(X; x̂∗k)− t̂∗k, f̌k(X; x̂∗k)} ≤ 0.

Thus, we alway have t̂∗k ≥ t∗k(X).
Assume that t̂∗k > t∗k(X). Then there exists a point y such that

f̂k(X; y)− t∗k(X) ≤ 0, f̌k(X; y) ≤ 0.

However, in this case t̂∗k = f̂k(X; x̂∗k) ≤ f̂k(X; y) ≤ t∗k(X) < t̂∗k. That is a contradiction. 2

In our analysis we will need also the function

f ∗k (X; t) = min
0≤j≤k

fk(X; t, xj),

the record value of our parametric model.

Lemma 3.3.5 Let t0 < t1 ≤ t∗. Assume that f̂ ∗k (X; t1) > 0. Then t∗k(X) > t1 and

f̂ ∗k (X; t0) ≥ f̂ ∗k (X; t1) + t1−t0
t∗
k
(X)−t1

f̂ ∗k (X; t1). (3.3.6)

Proof. Denote x∗k(t) ∈ Arg min fk(X; t, x), t2 = t∗k(X), α = t1−t0
t2−t0

∈ [0, 1]. Then

t1 = (1− α)t0 + αt2

and the inequality (3.3.6) is equivalent to the following:

f̂ ∗k (X; t1) ≤ (1− α)f̂ ∗k (X; t0) + αf̂ ∗k (X; t2) (3.3.7)

(note that f̂ ∗k (X; t2) = 0). Let xα = (1− α)x∗k(t0) + αx∗k(t2). Then we have:

f̂ ∗k (X; t1) ≤ max{f̂k(X; xα)− t1; f̌k(X; xα)}

≤ max{(1− α)(f̂k(X; x∗k(t0))− t0) + α(f̂k(X; x∗k(t2))− t2);

(1− α)f̌k(X; x∗k(t0)) + αf̌k(X; x∗k(t2))}

≤ (1− α) max{f̂k(X; x∗k(t0))− t0; f̌k(X; x∗k(t0))}

+α max{f̂k(X; x∗k(t2))− t2; f̌k(X; x∗k(t2))}

= (1− α)f̂ ∗k (X; t0) + αf̂ ∗k (X; t2),
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and we get (3.3.7). 2

We need also the following statement (compare with Lemma 2.3.5).

Lemma 3.3.6 For any ∆ ≥ 0 we have:

f ∗(t)−∆ ≤ f ∗(t + ∆),

f̂ ∗k (X; t)−∆ ≤ f̂ ∗k (X; t + ∆)

Proof. Indeed, for f ∗(t) we have:

f ∗(t + ∆) = min
x∈Q

[max{f(x)− t; f̄(x) + ∆} −∆]

≥ min
x∈Q

[max{f(x)− t; f̄(x)} −∆] = f ∗(t)−∆.

The proof of the second inequality is similar. 2

Now we are ready to present a constrained minimization scheme (compare with Section
2.3.5).

Contained Level Method (3.3.8)

0. Choose x0 ∈ Q, t0 < t∗ κ ∈ (0, 1
2
) and an accuracy ε > 0.

1. kth iteration (k ≥ 0).

a). Continue the generation of the sequence X = {xj}∞j=0 by the Level Method as
applied to the function f(tk; x). If the internal termination criterion

f̂ ∗j (X; tk) ≥ (1− κ)f ∗j (X; tk)

holds, then stop the internal process and set j(k) = j.

Global Stop: Terminate the whole process if f ∗j (X; tk) ≤ ε.

b). Set tk+1 = t∗j(k)(X). 2

We are interested in the analytical complexity of this method. Therefore the complexity
of computation of the root t∗j(X) and optimal value of the model f̂ ∗j (X; t) is not important
for us now. We need to estimate the rate of convergence of the master process and the
complexity of Step 1a).

Let us start from the master process.

Lemma 3.3.7 For all k ≥ 0 we have:

f ∗j(k)(X; tk) ≤ t0−t∗
1−κ

[
1

2(1−κ)

]k
.
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Proof:
Denote

σk =
f∗

j(k)
(X;tk)√

tk+1−tk
, β = 1

2(1−κ)
(< 1).

Since tk+1 = t∗j(k)(X) and in view of Lemma 3.3.5, for all k ≥ 1 we have:

σk−1 = 1√
tk−tk−1

f ∗j(k−1)(X; tk−1) ≥ 1√
tk−tk−1

f̂ ∗j(k)(X; tk−1)

≥ 2√
tk+1−tk

f̂ ∗j(k)(X; tk) ≥ 2(1−κ)√
tk+1−tk

f ∗j(k)(X; tk) = σk

β
.

Thus, σk ≤ βσk−1 and we obtain

f ∗j(k)(X; tk) = σk

√
tk+1 − tk ≤ βkσ0

√
tk+1 − tk = βkf ∗j(0)(X; t0)

√
tk+1 − tk
t1 − t0

.

Further, in view of Lemma 3.3.6, t1 − t0 ≥ f̂ ∗j(0)(X; t0). Therefore

f ∗j(k)(X; tk) ≤ βkf ∗j(0)(X; t0)
√

tk+1−tk
f̂∗

j(0)
(X;t0)

≤ βk

1−κ

√
f̂ ∗j(0)(X; t0)(tk+1 − tk) ≤ βk

1−κ

√
f ∗(t0)(t0 − t∗).

It remains to note that f ∗(t0) ≤ t0 − t∗ (see Lemma 3.3.6). 2

Now we are prepared for the complexity analysis of the scheme (3.3.8). Let f ∗j (X; tk) ≤ ε.
Then there exist j∗ such that

f(tk; xj∗) = f ∗j (X; tk) ≤ ε.

Therefore we have:
f(tk; xj∗) = max{f(xj∗)− tk; f̄(xj∗)} ≤ ε.

Since tk ≤ t∗, we conclude that
f(xj∗) ≤ t∗ + ε,

f̄(xj∗) ≤ ε.
(3.3.9)

In view of Lemma 3.3.7, we can get (3.3.9) at most in

N(ε) =
1

ln[2(1− κ)]
ln

t0 − t∗

(1− κ)ε

full iterations of the master process. (The last iteration of the process is terminated by the
Global Stop rule). Note that in the above expression κ is an absolute constant (for example,
we can take κ = 1

4
).
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Let us estimate the complexity of the internal process. Denote

Mf = max{‖ g ‖ | g ∈ ∂f(x)
⋃

∂f̄(x), x ∈ Q}.
We need to analyze two cases.

1. Full step. At this step the internal process is terminated by the rule

f̂ ∗j(k)(X; tk) ≥ (1− κ)f ∗j(k)(X; tk)

The corresponding inequality for the gap is as follows:

f ∗j(k)(X; tk)− f̂ ∗j(k)(X; tk) ≤ κf ∗j(k)(X; tk).

In view of Theorem 3.3.1, this happens at most after

M2
f D2

κ2(f ∗j(k)(X; tk))2α(1− α)2(2− α)

iterations of the internal process. Since at the full step f ∗j(k)(X; tk)) ≥ ε, we conclude that

j(k)− j(k − 1) ≤ M2
f D2

κ2ε2α(1− α)2(2− α)

for any full iteration of the master process.
2. Last step. The internal process of this step was terminated by Global Stop rule:

f ∗j (X; tk) ≤ ε.

Since the normal stopping criterion did not work, we conclude that

f ∗j−1(X; tk)− f̂ ∗j−1(X; tk) ≥ κf ∗j−1(X; tk) ≥ κε.

Therefore, in view of Theorem 3.3.1, the number of iterations at the last step does not exceed

M2
f D2

κ2ε2α(1− α)2(2− α)

Thus, we come to the following estimate of the total complexity of the constrained Level
Method:

(N(ε) + 1)
M2

f D2

κ2ε2α(1−α)2(2−α)

=
M2

f D2

κ2ε2α(1−α)2(2−α)

[
1 + 1

ln[2(1−κ)]
ln t0−t∗

(1−κ)ε

]

=
M2

f D2 ln
2(t0−t∗)

ε

ε2α(1−α)2(2−α)κ2 ln[2(1−κ)]
.

It can be shown that the reasonable choice for the parameters of this scheme is as follows:
α = κ = 1

2+
√

2
.
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The principal term in the above complexity estimate is in order of 1
ε2

ln 2(t0−t∗)
ε

. Thus,
the constrained Level Method is suboptimal (see Theorem 3.2.1).

In this method, at each iteration of the master process we need to solve the problem of
finding the root t∗j(k)(X). In view of Lemma 3.3.4, that is

min{f̂k(X; x) | f̌k(X; x) ≤ 0, x ∈ Q}.

This is equivalent to the following:

min t,

s.t. f(xj) + 〈g(xj), x− xj〉 ≤ t, j = 0, . . . , k,

f̄(xj) + 〈ḡ(xj), x− xj〉 ≤ 0, j = 0, . . . , k,

x ∈ Q.

If Q is a polytope, that can be solved by finite LP-methods (simplex method). If Q is more
complicated, we need to use Interior-Point Methods.

To conclude this section, let us note that we can use a better model for the constraints.
Since

f̄(x) = max
1≤i≤m

fi(x),

it is possible to deal with

f̌k(X; x) = max
0≤j≤k

max
1≤i≤m

[fi(xj) + 〈gi(xj), x− xj〉],

where gi(xj) ∈ ∂fi(xj). In practice, this complete model significantly increases the conver-
gence of the process. However, clearly each iteration becomes more expensive.

As far as practical behavior of this scheme is concerned, we should note that the process
usually is very fast. There are some technical problems, related to accumulation of too
many linear pieces in the models. However, all practical schemes we use some technique for
dropping the old elements of the model.



Chapter 4

Structural Programming

4.1 Self-Concordant Functions

(Do we really have a black box? What the Newton method actually does? Definition of
self-concordant functions; Main Properties; Minimizing the self-concordant function.)

4.1.1 Black box concept in Convex Programming

In this chapter we are going to discuss the main ideas, underlying the modern polynomial-
time interior-point methods in Nonlinear Programming. In order to start, let us look first
at the traditional formulation of a minimization problem.

Suppose we want to solve the problem:

min
x∈Rn

{f0(x) | fj(x) ≤ 0, j = 1 . . . m}.

We assume that all functional components of this problem are convex. Note that the Convex
Programming schemes for solving this problem are based on the concept of Black Box. This
means that we assume our problem to be equipped by an oracle, which provides us with
some information about the functional components of the problem at some test point x.
This oracle is local: If we change the shape of a component far enough from the test point,
the answer of the oracle is not changing. These answers is the only information available for
numerical method.1

However, if we look carefully at the above concept, we can see a certain contradiction.
Indeed, in order to apply the convex programming methods, we need to be sure that our
function is convex. However, we can check convexity only by analyzing the structure of the
function2: If our function is obtained from the basic convex functions by convex operations
(summation, maximum, etc.), we conclude that it is convex.

Thus, the functional components of the problem are not in a black box in the moment we
check their convexity and choose the minimization scheme. But we put them in a black box

1We have discussed this concept and the corresponding methods in the previous chapters.
2The straightforward verification of convexity is much more difficult than the initial minimization problem.
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for numerical methods. That is the main conceptual contradiction of the standard Convex
Programming theory.

How we can avoid this contradiction? On the conceptual level that can be done using
the notion of mediator. For a minimization problem P , the mediator is a new minimization
problem M, which properly reflects the properties of the problem P , but which is easier
to solve than the initial problem. More specificly, we should be able to reconstruct an
approximate solution of the initial problem, using an approximate solution of the mediator.

Of course, the concept of mediator covers all possible reformulations of the initial problem,
starting from keeping its initial form upto the analytical solution of the problem3:

M≡ P ←− . . . −→M ≡ (f ∗, x∗).

In nonlinear analysis this notion is useful only if we manage to find for it a right place
between these extreme points.

Note that a nontrivial mediator should be an easy minimization problem. Therefore, its
creation consists in some analytical work, which can be seen as a part of the whole process
of solving the initial problem. Since we are speaking about the mediators for minimization
problems, it is convenient to keep the oracle model for the data support of the numerical
methods. However, for nontrivial mediators the oracle is not local anymore and that is
known to the minimization schemes we apply.

In fact, the right definition of a mediator can be found from the analysis of a concrete
numerical method (we call it the basic method). In this case, we apply the following scheme:

• Choose a basic method.

• Describe a set of problems, for which the basic method is very efficient.

• Prove that the diversity of these problems is sufficient to be used as mediators for our
initial problem class.

• Describe the class of problems, for which the mediator can be created in a computable
form.

There is only one necessary condition to get a theoretical advantage from this approach: The
real performance of the basic method should be poorly described by the standard theory.

The modern polynomial-time interior-point methods in Convex Programming are based
on the mediators suitable for the Newton method (see Section 1.2.4) as applied in the frame-
work of Sequential Unconstrained Minimization (see Section 1.3.3).

In the succeeding sections we will explain what are the drawbacks of the standard analysis
of the Newton method. We will derive the family of mediators based on very special convex
functions, the self-concordant functions and self-concordant barriers.

3For example, the Gauss elimination scheme for linear system can be seen as a sequence of equivalent
reformulations.
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4.1.2 What the Newton method actually does?

Let us look at the standard result on the local convergence of the Newton method (we have
proved it as Theorem 1.2.5). We are trying to find an unconstrained local minimum x∗ of
the twice differentiable function f(x). We assume that:

• f ′′(x∗) ≥ lIn with some constant l > 0,

• ‖ f ′′(x)− f ′′(y) ‖≤ M ‖ x− y ‖ for all x and y ∈ Rn.

We assume also that the starting point of the Newton process x0 is close enough to x∗:

‖ x0 − x∗ ‖< r̄ =
2l

3M
. (4.1.1)

Then we can prove that the sequence

xk+1 = xk − [f ′′(xk]
−1f ′(xk), k ≥ 0, (4.1.2)

is well-defined. Moreover, ‖ xk − x∗ ‖< r̄ for all k ≥ 0 and the Newton method (4.1.2)
converges quadratically:

‖ xk+1 − x∗ ‖≤ M ‖ xk − x∗ ‖2

2(l −M ‖ xk − x∗ ‖) .

What is bad in this result? Note that the description of the region of quadratic conver-
gence (4.1.1) for this method is given in the standard metric

〈x, y〉 =
n∑

i=1

x(i)y(i).

If we choose a new basis in Rn, then all objects in our description are changing: the metric,
the Hessians, the bounds l and M . But let us look what happens with the Newton process.
Namely, let A be a nondegenerate (n× n)-matrix. Consider the function

φ(y) = f(Ay).

The following result is very important for understanding the nature of the Newton method.

Lemma 4.1.1 Let {xk} be a sequence, generated by the Newton method for function f :

xk+1 = xk − [f ′′(xk)]
−1f ′(xk), k ≥ 0.

Consider the sequence {yk}, generated by the Newton method for function φ:

yk+1 = yk − [φ′′(yk)]
−1φ′(yk), k ≥ 0,

with y0 = A−1x0. Then yk = A−1xk for all k ≥ 0.
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Proof:
Let yk = A−1xk for some k ≥ 0. Then

yk+1 = yk − [φ′′(yk)]
−1φ′(yk) = yk − [AT f ′′(Ayk)A]−1AT f ′(Ayk)

= A−1xk − A−1[f ′′(xk)]
−1f ′(xk) = A−1xk+1 2

Thus, the Newton method is affine invariant with respect to affine transformation of
variables. Therefore its real region of quadratic convergence does not depend on the metric.
It depends only on the local topological structure of function f(x).

Let us try to understand what was bad in our assumptions. The main assumption we
used is the Lipshitz continuity of the Hessians:

‖ f ′′(x)− f ′′(y) ‖≤ M ‖ x− y ‖, ∀x, y ∈ Rn.

Let us assume that f ∈ C3(Rn). Denote

f ′′′(x)[u] = lim
α→0

1

α
[f ′′(x + αu)− f ′′(x)].

Note that the object in the right-hand side is an (n × n)-matrix. Then our assumption is
equivalent to the following: ‖ f ′′′(x)[u] ‖≤ M ‖ u ‖. This means that at any point x ∈ Rn

we have
| 〈f ′′′(x)[u]v, v〉 |≤ M ‖ u ‖ · ‖ v ‖2

for all u and v ∈ Rn. Note that the value in the left-hand side of this inequality is invariant
with respect to affine transformation of variables. However, the right-hand side does not
possess this property. Therefore the most natural way to improve the situation is to find
an affine-invariant replacement for the standard norm ‖ · ‖. The main candidate for the
replacement is just evident: That is the norm defined by the Hessian f ′′(x), namely,

‖ u ‖f ′′(x)= 〈f ′′(x)u, u〉1/2.

This choice gives us the class of self-concordant functions.

4.1.3 Definition of self-concordant function

Let us consider a closed convex function f(x) ∈ C3(dom f) with open domain. Let us fix a
point x ∈ dom f and a direction u ∈ Rn. Consider the function

φ(x; t) = f(x + tu),

depending on the variable t ∈ dom φ(x; ·) ⊆ R1. Denote

Df(x)[u] = φ′(x; t) = 〈f ′(x), u〉,

D2f(x)[u, u] = φ′′(x; t) = 〈f ′′(x)u, u〉 =‖ u ‖2
f ′′(x),

D3f(x)[u, u, u] = φ′′′(x; t) = 〈D3f(x)[u]u, u〉.
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Definition 4.1.1 We call a function f self-concordant if the inequality

| D3f(x)[u, u, u] |≤ Mf ‖ u ‖3/2
f ′′(x)

holds for any x ∈ dom f and u ∈ Rn with some constant Mf ≥ 0.

Note that we cannot expect these functions to be very widespread. But we need them
only to construct the mediators. We will see very soon that they are easy to be minimized
by the Newton method.

Let us point out the equivalent definition of self-concordant functions.

Lemma 4.1.2 A functionf is self-concordant if and only if for any x ∈ dom f and any u1,
u2, u3 ∈ Rn we have

| D3f(x)[u1, u2, u3] |≤ Mf ‖ u1 ‖f ′′(x) · ‖ u2 ‖f ′′(x) · ‖ u3 ‖f ′′(x) . (4.1.3)

This statement is nothing but a general property of three-linear forms. Therefore we put its
proof in Appendix.

In what follows, we very often use Definition 4.1.1 to prove that some f is self-concordant.
To the contrary, Lemma 4.1.2 is useful for establishing the properties of self-concordant
functions.

Let us consider several examples.

Example 4.1.1 1. Linear function. Consider the function

f(x) = α + 〈a, x〉, dom f = Rn.

Then
f ′(x) = a, f ′′(x) = 0, f ′′′(x) = 0,

and we conclude that Mf = 0.

2. Convex quadratic function. Consider the function

f(x) = α + 〈a, x〉+ 1
2
〈Ax, x〉, dom f = Rn,

where A = AT ≥ 0. Then

f ′(x) = a + Ax, f ′′(x) = A, f ′′′(x) = 0,

and we conclude that Mf = 0.

3. Logarithmic barrier for a ray. Consider a function of one variable

f(x) = − ln x, dom f = {x ∈ R1 | x > 0}.
Then

f ′(x) = −1

x
, f ′′(x) =

1

x2
, f ′′′(x) = − 2

x3
.

Therefore f(x) is self-concordant with Mf = 2.
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4. Logarithmic barrier for a quadratic region. Let A = AT ≥ 0. Consider the concave
function

φ(x) = α + 〈a, x〉 − 1
2
〈Ax, x〉.

Define f(x) = − ln φ(x), with dom f = {x ∈ Rn | φ(x) > 0}. Then

Df(x)[u] = − 1
φ(x)

[〈a, u〉 − 〈Ax, u〉],

D2f(x)[u, u] = 1
φ2(x)

[〈a, u〉 − 〈Ax, u〉]2 + 1
φ(x)

〈Au, u〉,

D3f(x)[u, u, u] = − 2
φ3(x)

[〈a, u〉 − 〈Ax, u〉]3 − 3
φ2(x)

[〈a, u〉 − 〈Ax, u〉]〈Au, u〉

Denote ω1 = Df(x)[u] and ω2 = 1
φ(x)

〈Au, u〉. Then

D2f(x)[u, u] = ω2
1 + ω2 ≥ 0,

| D3f(x)[u, u, u] | =| 2ω3
1 + 3ω1ω2 | .

The only nontrivial case is ω1 6= 0. Denote α = ω2/ω
2
1. Then

| D3f(x)[u, u, u] |
(D2f(x)[u, u])3/2

≤ 2 | ω1 |3 +3 | ω1 | ω2

(ω2
1 + ω2)3/2

=
2(1 + 3

2
α)

(1 + α)3/2
≤ 2.

Thus, this function is self-concordant and Mf = 2.

5. It is easy to verify that none of the following functions of one variable is self-concordant:

f(x) = ex, f(x) =
1

xp
, x > 0, p > 0, f(x) =| xp |, p > 2. 2

Let us look now at the simple properties of self-concordant functions.

Theorem 4.1.1 Let functions fi are self-concordant with constants Mi, i = 1, 2 and let α,
β > 0. Then the function f(x) = αf1(x) + βf2(x) is self-concordant with the constant

Mf = max

{
1√
α

M1,
1√
β

M2

}

and dom f = dom f1
⋂

dom f2.

Proof:
Note that f is a closed convex function in view of Theorem 3.1.5. Let us fix some x ∈ dom f
and u ∈ Rn. Then

| D3fi(x)[u, u, u] |≤ Mi

[
D2fi(x)[u, u]

]3/2
, i = 1, 2.
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Denote ωi = D2fi(x)[u, u] ≥ 0. Then

| D3f(x)[u, u, u] |
[D2f(x)[u, u]]3/2

≤ α | D3f1(x)[u, u, u] | +β | D3f2(x)[u, u, u] |
[αD1f1(x)[u, u] + βD2f2(x)[u, u]]3/2

≤ αM1ω
3/2
1 + βM2ω

3/2
2

[αω1 + βω2]3/2
.

Note that the right-hand side of this inequality is not changing when we replace (ω1, ω2) by
(tω1, tω2) with t > 0. Therefore we can assume that αω1 + βω2 = 1. Denote ξ = αω1. Then
the right-hand side of the above inequality is as follows:

M1√
α

ξ3/2 +
M2√

β
(1− ξ)3/2, ξ ∈ [0, 1]

This function is convex in ξ. Therefore its maximum is either ξ = 0 or ξ = 1 (see Corollary
3.1.1). 2

Corollary 4.1.1 Let the function f be self-concordant with some constant Mf . If A = AT ≥
0 then the function

φ(x) = α + 〈a, x〉+ 1
2
〈Ax, x〉+ f(x)

is also self-concordant with the constant Mφ = Mf .

Proof:
We have seen that any convex quadratic function is self-concordant with the constant equal
to zero. 2

Corollary 4.1.2 Let the function f be self-concordant with some constant Mf and α > 0.
Then the function φ(x) = αf(x) is also self-concordant with the constant Mφ = 1√

α
Mf . 2

Let us prove now that self-concordance is an affine-invariant property.

Theorem 4.1.2 Let A(x) = Ax + b be a linear operator: A(x) : Rn → Rm. Assume that
a function f(y) is self-concordant with the constant Mf . Then the function φ(x) = f(A(x))
is also self-concordant and Mφ = Mf .

Proof:
The function φ(x) is closed and convex in view of Theorem 3.1.6. Let us fix some x ∈
dom φ = {x : A(x) ∈ dom f} and u ∈ Rn. Denote y = A(x), v = Au. Then

Dφ(x)[u] = 〈f ′(A(x)), Au〉 = 〈f ′(y), v〉,

D2φ(x)[u, u] = 〈f ′′(A(x))Au,Au〉 = 〈f ′′(y)v, v〉,

D3φ(x)[u, u, u] = D3f(A(x))[Au,Au, Au] = D3f(y)[v, v, v].
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Therefore

| D3φ(x)[u, u, u] |=| D3f(y)[v, v, v] |≤ Mf〈f ′′(y)v, v〉3/2 = Mf (D
2φ(x)[u, u])3/2.

2

The next statement demonstrates that some local properties of self-concordant function
are affected anyhow by the global properties of its domain.

Theorem 4.1.3 Let the function f be self-concordant. If dom f contains no straight line,
then the Hessian f ′′(x) is nondegenerate at any x ∈ dom f .

Proof:
Assume that 〈f ′′(x)u, u〉 = 0 for some x ∈ dom f and u ∈ Rn, u 6= 0. Consider the points
yα = x + αu ∈ dom f and the function ψ(α) = 〈f ′′(yα)u, u〉. Note that

ψ′(α) = D3f(yα)[u, u, u] ≤ 2ψ(α)3/2, ψ(0) = 0.

Since ψ(α) ≥ 0, we conclude that ψ′(0) = 0. Therefore this function is a part of solution of
the following system of differential equations:

ψ′(α) + ξ′(α) = 2ψ(α)3/2, ξ′(α) = 0, ψ(0) = ξ(0) = 0.

However, this system has a unique trivial solution. Therefore ψ(α) = 0 for all feasible α.
Thus, we have shown that the function φ(α) = f(yα) is linear:

φ(α) = f(x) + 〈f ′(x), yα − x〉+

α∫

0

λ∫

0

〈f ′′(yτ )u, u〉dτdλ = f(x) + α〈f ′(x), u〉.

Assume that there exists ᾱ such that yᾱ ∈ ∂(dom f). Consider a sequence {αk} such that
αk ↑ ᾱ. Then

zk = (yαk
, φ(αk)) → z̄ = (yᾱ, φ(ᾱ)).

Note that zk ∈ epi f , but z̄ /∈ epi f since yᾱ /∈ dom f . That is a contradiction since function f
is closed. Considering direction −u, and assuming that this ray intersects the boundary, we
come to a contradiction again. Therefore we conclude that yα ∈ dom f for all α. However,
that is a contradiction with the assumptions of the theorem. 2

Finally, let us describe the behavior of self-concordant function near the boundary of its
domain.

Theorem 4.1.4 Let f be a self-concordant function. Then for any point x̄ ∈ ∂(dom f) and
any sequence

{xk} ⊂ dom f : xk → x̄

we have f(xk) → +∞.
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Proof:
Note that the sequence {f(xk)} is bounded below:

f(xk) ≥ f(x0) + 〈f ′(x0), xk − x0〉.
Assume that it is bounded from above. Then it has a limit point f̄ . Of course, we can think
that this is a unique limit point of the sequence. Therefore

zk = (xk, f(xk)) → z̄ = (x̄, f̄).

Note that zk ∈ epi f , but z̄ /∈ epi f since x̄ /∈ dom f . That is a contradiction since function
f is closed. 2

Thus, we have proved that f(x) is a barrier function for cl (dom f) (see Section 1.3.3).

4.1.4 Main inequalities

In this section we will present the main properties of self-concordant functions, which are
important for minimization schemes. Let us fix some self-concordant function f(x). We
assume that its constant Mf = 2 (otherwise we can scale it, see Corollary 4.1.2). We call
such functions standard self-concordant. We assume also that dom f contains no straight
line (this implies that all f ′′(x) are nondegenerate, see Theorem 4.1.3).

Denote:
‖ u ‖x = 〈f ′′(x)u, u〉1/2,

‖ v ‖∗x = 〈[f ′′(x)]−1v, v〉1/2,

λf (x) = 〈[f ′′(x)]−1f ′(x), f ′(x)〉1/2.

Clearly, | 〈v, u〉 |≤‖ v ‖∗x · ‖ u ‖x. We call ‖ u ‖x the local norm of the point u with respect
to x, and λf (x) =‖ f ′(x) ‖∗x the local norm of the gradient f ′(x).4

Let us fix x ∈ dom f and u ∈ Rn, u 6= 0. Consider the function of one variable

φ(t) =
1

〈f ′′(x + tu)u, u〉1/2

with the domain dom φ = {t ∈ R1 : x + tu ∈ dom f}.
Lemma 4.1.3 For all feasible t we have | φ′(t) |≤ 1.

Proof:
Indeed,

φ′(t) = − f ′′′(x + tu)[u, u, u]

2〈f ′′(x + tu)u, u〉3/2
.

Therefore | φ′(t) |≤ 1 in view of Definition 4.1.1. 2

4Sometimes the latter value is called the Newton decrement of function f at x.
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Corollary 4.1.3 The domain of function φ(t) contains the interval (−φ(0), φ(0)).

Proof:
Since f(x + tu) →∞ as x + tu approaches the boundary of dom f (see Theorem 4.1.4), the
function 〈f ′′(x + tu)u, u〉 cannot be bounded. Therefore dom φ ≡ {t | φ(t) > 0}. It remains
to note that φ(t) ≥ φ(0)− | t | in view of Lemma 4.1.3. 2

Let us consider the following ellipsoid:

W 0(x; r) = {y ∈ Rn | ‖ y − x ‖x< r},

W (x; r) = cl (W 0(x; r)) ≡ {y ∈ Rn | ‖ y − x ‖x≤ r}.

This ellipsoid is called the Dikin ellipsoid of function f at x.

Theorem 4.1.5 1. For any x ∈ dom f we have W 0(x; 1) ⊆ dom f .

2. For all x, y ∈ dom f the following inequality holds:

‖ y − x ‖y≥ ‖ y − x ‖x

1+ ‖ y − x ‖x

. (4.1.4)

3. If ‖ y − x ‖x< 1 then

‖ y − x ‖y≤ ‖ y − x ‖x

1− ‖ y − x ‖x

. (4.1.5)

Proof:
1. In view of Corollary 4.1.3, dom f contains the set {y = x + tu | t2 ‖ u ‖2

x< 1} (since
φ(0) = 1/ ‖ u ‖x). That is exactly W 0(x; 1).

2. Let us choose u = y − x. Then

φ(1) =
1

‖ y − x ‖y

, φ(0) =
1

‖ y − x ‖x

,

and φ(1) ≤ φ(0) + 1 in view of Lemma 4.1.3. That is (4.1.4).
3. If ‖ y − x ‖x< 1, then φ(0) > 1, and in view of Lemma 4.1.3 φ(1) ≥ φ(0)− 1. That is

(4.1.5). 2

Theorem 4.1.6 Let x ∈ dom f . Then for any y ∈ W 0(x; 1) we have:

(1− ‖ y − x ‖x)
2f ′′(x) ≤ f ′′(y) ≤ 1

(1− ‖ y − x ‖x)2
f ′′(x). (4.1.6)
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Proof:
Let us fix some u ∈ Rn, u 6= 0. Consider the function

ψ(t) = 〈f ′′(x + t(y − x))u, u〉, t ∈ [0, 1].

Denote yt = x + t(y − x). Then, in view of Lemma 4.1.2 and (4.1.5), we have:

| ψ′(t) | =| D3f(yt)[y − x, u, u] |≤ 2 ‖ y − x ‖yt‖ u ‖2
yt

= 2
t
‖ yt − x ‖yt ψ(t) ≤ 2

t
· ‖yt−x‖x

1−‖yt−x‖x
· ψ(t) = 2‖y−x‖x

1−t‖y−x‖x
· ψ(t).

Therefore
2(ln(1− t ‖ y − x ‖x))

′ ≤ (ln ψ(t))′ ≤ −2(ln(1− t ‖ y − x ‖x))
′.

Let us integrate this inequality in t ∈ [0, 1]. We get:

(1− ‖ y − x ‖x)
2 ≤ ψ(1)

ψ(0)
≤ 1

(1− ‖ y − x ‖x)2
.

That is exactly (4.1.6). 2

Corollary 4.1.4 Let x ∈ dom f and r =‖ y − x ‖x< 1. Then we can estimate the matrix

G =

1∫

0

f ′′(x + τ(y − x))dτ

as follows: (1− r + r2

3
)f ′′(x) ≤ G ≤ 1

1−r
f ′′(x).

Proof:
Indeed, in view of Theorem 4.1.6 we have:

G =
1∫
0

f ′′(x + τ(y − x))dτ ≥ f ′′(x)
1∫
0
(1− τr)2dτ = (1− r + 1

3
r2)f ′′(x),

G ≤ f ′′(x)
1∫
0

dτ
(1−τr)2

= 1
1−r

f ′′(x). 2

Let us look again at the most important facts we have proved.

• At any point x ∈ dom f we can point out an ellipsoid

W 0(x; 1) = {x ∈ Rn | 〈f ′′(x)(y − x), y − x)〉 < 1},

belonging to dom f .
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• Inside the ellipsoid W (x; r) with r ∈ [0, 1) the function f is almost quadratic since

(1− r)2f ′′(x) ≤ f ′′(y) ≤ 1

(1− r)2
f ′′(x)

for all y ∈ W (x; r). Choosing r small enough, we can make the quality of the quadratic
approximation acceptable for our goals.

These two facts form the basis almost for all consequent results. Note that in Convex
Optimization we have never seen such favorable properties of the functions we are going to
minimize.

We conclude this section by two results describing the variation of self-concordant func-
tion with respect to the linear approximation.

Theorem 4.1.7 For any x, y ∈ dom f we have:

〈f ′(y)− f ′(x), y − x〉 ≥ ‖ y − x ‖2
x

1+ ‖ y − x ‖x

, (4.1.7)

f(y) ≥ f(x) + 〈f ′(x), y − x〉+ ω(‖ y − x ‖x), (4.1.8)

where ω(t) = t− ln(1 + t).

Proof:
Denote yτ = x + τ(y − x), τ ∈ [0, 1], and r =‖ y − x ‖x. Then, in view of (4.1.4) we have:

〈f ′(y)− f ′(x), y − x〉 =
1∫
0
〈f ′′(yτ )(y − x), y − x〉dτ =

1∫
0

1
τ2 ‖ yτ − x ‖2

yτ
dτ

≥
1∫
0

r2

(1+τr)2
dτ = r

r∫
0

1
(1+t)2

dt = r2

1+r

Further, using (4.1.7), we obtain:

f(y)− f(x)− 〈f ′(x), y − x〉 =
1∫
0
〈f ′(yτ )− f ′(x), y − x〉dτ =

1∫
0

1
τ
〈f ′(yτ )− f ′(x), yτ − x〉dτ

≥
1∫
0

‖yτ−x‖2x
τ(1+‖yτ−x‖x)

dτ =
1∫
0

τr2

1+τr
dτ =

r∫
0

tdt
1+t

= ω(r). 2

Theorem 4.1.8 Let x ∈ dom f and ‖ y − x ‖x< 1. Then

〈f ′(y)− f ′(x), y − x〉 ≤ ‖ y − x ‖2
x

1− ‖ y − x ‖x

, (4.1.9)

f(y) ≤ f(x) + 〈f ′(x), y − x〉+ ω∗(‖ y − x ‖x), (4.1.10)

where ω∗(t) = −t− ln(1− t).
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Proof:
Denote yτ = x + τ(y − x), τ ∈ [0, 1], and r =‖ y − x ‖x. Since ‖ yτ − x ‖< 1, in view of
(4.1.5) we have:

〈f ′(y)− f ′(x), y − x〉 =
1∫
0
〈f ′′(yτ )(y − x), y − x〉dτ =

1∫
0

1
τ2 ‖ yτ − x ‖2

yτ
dτ

≤
1∫
0

r2

(1−τr)2
dτ = r

r∫
0

1
(1−t)2

dt = r2

1−r

Further, using (4.1.9), we obtain:

f(y)− f(x)− 〈f ′(x), y − x〉 =
1∫
0
〈f ′(yτ )− f ′(x), y − x〉dτ =

1∫
0

1
τ
〈f ′(yτ )− f ′(x), yτ − x〉dτ

≤
1∫
0

‖yτ−x‖2x
τ(1−‖yτ−x‖x)

dτ =
1∫
0

τr2

1−τr
dτ =

r∫
0

tdt
1−t

= ω∗(r). 2

The above theorems are written in terms of two auxiliary functions ω(t) = t− ln(1 + t)
and ω∗(τ) = −τ − ln(1− τ). Note that

ω′(t) = t
1+t

≥ 0, ω′′(t) = 1
(1+t)2

> 0,

ω′∗(τ) = τ
1−τ

≥ 0, ω′′∗(τ) = 1
(1−τ)2

> 0.

Therefore, ω(t) and ω∗(τ) are convex functions. In what follows we often use different
relations between these functions. Let us fix them for future references.

Lemma 4.1.4 For any t ≥ 0 and τ ∈ [0, 1) we have:

ω′(ω′∗(τ)) = τ, ω′∗(ω
′(t)) = t,

ω(t) = max
0≤ξ<1

[ξt− ω∗(ξ)], ω∗(τ) = max
ξ≥0

[ξτ − ω(ξ)]

ω(t) + ω∗(τ) ≥ τt,

ω∗(τ) = τω′∗(τ)− ω(ω′∗(τ)), ω(t) = tω′(t)− ω∗(ω′(t)).

We leave the proof of this lemma as an exercise for a reader. For an advanced reader we
should note that the only reason for the above relations is that functions ω(t) and ω∗(t) are
conjugate.

4.1.5 Minimizing the self-concordant function

Let us consider the following minimization problem:

min{f(x) | x ∈ dom f}. (4.1.11)
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The next theorem provides us with a sufficient condition for existence of its solution. Recall
that we assume that f is a standard self-concordant function and dom f contains no straight
line.

Theorem 4.1.9 Let λf (x) < 1 for some x ∈ dom f . Then the solution of problem (4.1.11),
x∗f , exists and unique.

Proof:
Indeed, in view of (4.1.8), for any y ∈ dom f we have:

f(y) ≥ f(x) + 〈f ′(x), y − x〉+ ω(‖ y − x ‖x)

≥ f(x)− ‖ f ′(x) ‖∗x · ‖ y − x ‖x +ω(‖ y − x ‖x)

= f(x)− λf (x)· ‖ y − x ‖x +ω(‖ y − x ‖x).

Therefore for any y ∈ Lf (f(x)) = {y ∈ Rn | f(y) ≤ f(x)} we have:

1

‖ y − x ‖x

ω(‖ y − x ‖x) ≤ λf (x) < 1.

Hence, ‖ y − x ‖x≤ t̄, where t̄ is a unique positive root of the equation

(1− λf (x))t = ln(1 + t).

Thus, Lf (f(x)) is bounded and therefore x∗f exists. It is unique since in view of (4.1.8) for
all y ∈ dom f we have

f(y) ≥ f(x∗f ) + ω(‖ y − x∗f ‖x∗f ). 2

Thus, we have proved that a local condition λf (x) < 1 provides us with a global infor-
mation on function f , the existence of the minimum x∗f . Note that the result of Theorem
4.1.9 cannot be improved.

Example 4.1.2 Let us fix some ε > 0. Consider the function of one variable

fε(x) = εx− ln x, x > 0.

This function is self-concordant in view of Example 4.1.1 and Corollary 4.1.1. Note that

f ′ε(x) = ε− 1

x
, f ′′ε =

1

x2
.

Therefore λfε(x) =| 1 − εx |. Thus, for ε = 0 we have λf0(x) = 1 for any x > 0. Note that
the function f0 is not bounded below.

If ε > 0, then x∗fε
= 1

ε
. Note that we can recognize the existence of the minimizer at

point x = 1 even if ε is arbitrary small. 2
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Let us consider now the scheme of damped Newton method:

0. Choose x0 ∈ dom f.

1. Iterate xk+1 = xk − 1
1+λf (xk)

[f ′′(xk)]
−1f ′(xk), k ≥ 0.





(4.1.12)

Theorem 4.1.10 For any k ≥ 0 we have:

f(xk+1) ≤ f(xk)− ω(λf (xk)). (4.1.13)

Proof:

Denote λ = λf (xk). Then ‖ xk+1 − xk ‖x=
λ

1+λ
= ω′(λ). Therefore, in view of (4.1.10), we

have:
f(xk+1) ≤ f(xk) + 〈f ′(xk), xk+1 − xk〉+ ω∗(‖ xk+1 − xk ‖x)

= f(xk)− λ2

1+λ
+ ω∗(ω′(λ))

= f(xk)− λω′(λ) + ω∗(ω′(λ)) = f(xk)− ω(λ)

(we have used Lemma 4.1.4). 2

Thus, for all x ∈ dom f with λf (x) ≥ β > 0 we can decrease the value of the f(x) at
least by the constant ω(β) > 0, using one step of the damped Newton method. Note that
the result of Theorem 4.1.10 is global. It can be used to obtain a global efficiency estimate
of the process.

Let us describe now the local convergence of the standard scheme of the Newton method:

0. Choose x0 ∈ dom f.

1. Iterate xk+1 = xk − [f ′′(xk)]
−1f ′(xk), k ≥ 0.





(4.1.14)

Note that we can measure the convergence of this process in different ways. We can estimate
the rate of convergence for the functional gap f(xk) − f(x∗f ), or for the local norm of the
gradient λf (xk) =‖ f ′(xk) ‖∗xk

, or for the local distance to the minimum ‖ xk − x∗f ‖xk
with

respect to xk. Let us prove that locally all these measures are equivalent.

Theorem 4.1.11 Let λf (x) < 1. Then

ω(λf (x)) ≤ f(x)− f(x∗f ) ≤ ω∗(λf (x)), (4.1.15)

ω′(λf (x)) ≤‖ x− x∗f ‖x≤ ω′∗(λf (x)), (4.1.16)

Proof:
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Denote r =‖ x− x∗f ‖x and λ = λf (x). The left-hand side of inequality (4.1.15) follows from
Theorem 4.1.10. Further, in view of (4.1.8) we have:

f(x∗f ) ≥ f(x) + 〈f ′(x), x∗f − x〉+ ω(r)

≥ f(x)− λr + ω(r) ≥ f(x)− ω∗(λ).

Further, in view of (4.1.7) we have:

r2

1 + r
≤ 〈f ′(x), x− x∗f〉 ≤ λr.

That is the right-hand side of inequality (4.1.16). If r ≥ 1 then the left-hand side of this
inequality is trivial. Suppose that r < 1. Then f ′(x) = G(x− x∗f ) with

G =

1∫

0

f ′′(x∗f + τ(x− x∗f ))dτ,

and
λ2

f (x) = 〈[f ′′(x)]−1G(x− x∗f ), G(x− x∗f )〉 ≤‖ H ‖2 r2,

where H = [f ′′(x)]−1/2G[f ′′(x)]−1/2. In view of Corollary 4.1.4, we have: G ≤ 1
1−r

f ′′(x).

Therefore ‖ H ‖≤ 1
1−r

and we conclude that

λ2
f (x) ≤ r2

(1− r)2
= (ω′∗(r))

2.

Thus, λf (x) ≤ ω′∗(r). Applying ω′(·) to both sides, we get the rest part of (4.1.16). 2

Let us estimate the local convergence of the Newton method (4.1.14) in terms of the local
norm of the gradient λf (x).

Theorem 4.1.12 Let x ∈ dom f and λf (x) < 1. Then the point x+ = x − [f ′′(x)]−1f ′(x)
belongs to dom f and we have

λf (x+) ≤
(

λf (x)

1− λf (x)

)2

.

Proof:
Denote p = x+ − x, λ = λf (x). Then ‖ p ‖x= λ < 1. Therefore x+ ∈ dom f (see Theorem
4.1.5). Note that in view of Theorem 4.1.6

λf (x+) = 〈[f ′′(x+)]−1f ′(x+), f ′(x+)〉1/2

≤ 1
1−‖p‖x

‖ f ′(x+) ‖x=
1

1−λ
‖ f ′(x+) ‖x .
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Further,

f ′(x+) = f ′(x+)− f ′(x)− f ′′(x)(x+ − x) = Gp,

where G =
1∫
0
[f ′′(x + τp)− f ′′(x)]dτ . Therefore

‖ f ′(x+) ‖2
x= 〈[f ′′(x)]−1Gp,Gp〉 ≤‖ H ‖2 · ‖ p ‖2

x,

where H = [f ′′(x)]−1/2G[f ′′(x)]−1/2. In view of Corollary 4.1.4,

(−λ +
1

3
λ2)f ′′(x) ≤ G ≤ λ

1− λ
f ′′(x).

Therefore ‖ H ‖≤ max
{

λ
1−λ

, λ− 1
3
λ2

}
= λ

1−λ
, and we conclude that

λ2
f (x+) ≤ 1

(1− λ)2
‖ f ′(x+) ‖2

x≤
λ4

(1− λ)4
. 2

Note that the above theorem provides us with the following description of the region of
quadratic convergence:

λf (x) < λ̄,

where λ̄ is the root of the equation λ
(1−λ)2

= 1 ( λ̄ = 3−√5
2

> 1
3
). In this case we can guarantee

that λf (x+) < λf (x)).
Thus, our results lead to the following strategy for solving the initial problem (4.1.11).

• First stage: λf (xk) ≥ β, where β ∈ (0, λ̄). At these stage we apply the damped Newton
method. At each iteration of this method we have

f(xk+1) ≤ f(xk)− ω(β).

Thus, the number of steps of this stage is bounded: N ≤ 1
ω(β)

[f(x0)− f(x∗f )].

• Second stage: λf (xk) ≤ β. At this stage we apply the standard Newton method. This
process converges quadratically:

λf (xk+1) ≤
(

λf (xk)

1− λf (xk)

)2

≤ βλf (xk)

(1− β)2
< λf (xk).

4.2 Self-Concordant Barriers

(Motivation; Definition of Self-Concordant Barriers; Main Properties; Standard Minimiza-
tion Problem; Central Path; Path-Following Method; How to initialize the process? Problems
with functional constraints)
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4.2.1 Motivation

Recall that we are trying to derive a family of mediators for convex minimization problems.
In the previous section we have shown that the Newton method is very efficient in mini-
mization of standard self-concordant functions. We have seen that such function is always
a barrier for its domain. Let us check what can be said about Sequential Unconstrained
Minimization scheme, which uses such barriers.

In what follows we deal with minimization problems of special type. Denote Dom f =
cl (dom f).

Definition 4.2.1 We call a constrained minimization problem standard if it has the follow-
ing form:

min{〈c, x〉 | x ∈ Q}, (4.2.1)

where Q is a closed convex set. We assume also that we know a self-concordant function f
such that Dom f = Q.

Let us introduce a parametric penalty function

f(t; x) = t〈c, x〉+ f(x)

with t ≥ 0. Note that f(t; x) is self-concordant in x (see Corollary 4.1.1). Denote

x∗(t) = arg min
x∈dom f

f(t; x).

This trajectory is called the central path of the problem (4.2.1). Note that we can expect
x∗(t) → x∗ as t →∞ (see Section 1.3.3). Therefore we are going to follow the central path.

Recall that the standard Newton method, as applied to minimization of function f(t; x)
has a local quadratic convergence (Theorem 4.1.12). Moreover, we have an explicit descrip-
tion of the region of quadratic convergence:

λf(t;·)(x) ≤ β < λ̄ =
3−√5

2
.

Therefore we can study our possibilities assuming that we know exactly x = x∗(t) for some
t > 0.

Thus, we are going to increase t:

t+ = t + ∆, ∆ > 0.

However, we need to keep x in the region of quadratic convergence of the Newton method
for the function f(t + ∆; ·):

λf(t+∆;·)(x) ≤ β < λ̄.

Note that the update t → t+ does not change the Hessian of the barrier function:

f ′′(t + ∆; x) = f ′′(t; x).
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Therefore it is easy to estimate how large ∆ we can use. Indeed, the first order optimality
condition provides us with the following central path equation:

tc + f ′(x∗(t)) = 0. (4.2.2)

Since tc + f ′(x) = 0, we obtain:

λf(t+∆;·)(x) =‖ t+c + f ′(x) ‖x= ∆ ‖ c ‖x=
∆

t
‖ f ′(x) ‖x≤ β.

Thus, if we want to increase t in a linear rate, we need to assume that the value

‖ f ′(x) ‖2
x≡ 〈[f ′′(x)]−1f ′(x), f ′(x)〉

is uniformly bounded on dom f .
Thus, we come to the definition of self-concordant barrier.

4.2.2 Definition of self-concordant barriers

Definition 4.2.2 Let F (x) be a standard self-concordant function. We call it a ν-self-
concordant barrier for the set Dom F , if

max
u∈Rn

[2〈F ′(x), u〉 − 〈F ′′(x)u, u〉] ≤ ν (4.2.3)

for all x ∈ dom F . The value ν is called the parameter of the barrier.

Note that we do not assume F ′′(x) to be non-degenerate. However, if this is the case,
then the inequality (4.2.3) is equivalent to the following:

〈[F ′′(x)]−1F ′(x), F ′(x)〉 ≤ ν. (4.2.4)

We will use also the following consequence of the inequality (4.2.3):

〈F ′(x), u〉2 ≤ ν〈F ′′(x)u, u〉 (4.2.5)

for all u ∈ Rn. (To see that for u with 〈F ′′(x)u, u〉 > 0, replace u in (4.2.3) by λu and find
the maximum of the left-hand side with respect to λ.)

Let us check now which of the self-concordant functions presented in Example 4.1.1 are
self-concordant barriers.

Example 4.2.1 1. Linear function: f(x) = α + 〈a, x〉, dom f = Rn. Clearly, unless
a = 0, this function is not a self-concordant barrier since f ′′(x) = 0.

2. Convex quadratic function. Let A = AT > 0. Consider the function

f(x) = α + 〈a, x〉+ 1
2
〈Ax, x〉, dom f = Rn.

Then f ′(x) = a + Ax and f ′′(x) = A. Therefore

〈[f(x)]−1f ′(x), f ′(x)〉 = 〈A−1(Ax− a), Ax− a〉 = 〈Ax, x〉 − 2〈a, x〉+ 〈A−1a, a〉.
Clearly, this value is unbounded from above on Rn. Thus, a quadratic function is not
a self-concordant barrier.
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3. Logarithmic barrier for a ray. Consider the following function of one variable:

F (x) = − ln x, dom F = {x ∈ R1 | x > 0}.

Then F ′(x) = − 1
x

and F ′′(x) = 1
x2 > 0. Therefore

(F ′(x))2

F ′′(x)
=

1

x2
· x2 = 1.

Thus, F (x) is a ν-self-concordant barrier for {x > 0} with ν = 1.

4. Logarithmic barrier for a quadratic region. Let A = AT ≥ 0. Consider the concave
quadratic function

φ(x) = α + 〈a, x〉 − 1
2
〈Ax, x〉.

Define F (x) = − ln φ(x), dom f = {x ∈ Rn | φ(x) > 0}. Then

〈F ′(x), u〉 = − 1
φ(x)

[〈a, u〉 − 〈Ax, u〉],

〈F ′′(x)u, u〉 = 1
φ2(x)

[〈a, u〉 − 〈Ax, u〉]2 + 1
φ(x)

〈Au, u〉.

Denote ω1 = 〈F ′(x), u〉 and ω2 = 1
φ(x)

〈Au, u〉. Then

〈F ′′(x)u, u〉 = ω2
1 + ω2 ≥ ω2

1.

Therefore 2〈F ′(x), u〉 − 〈F ′′(x)u, u〉 ≤ 2ω1−ω2
1 ≤ 1. Thus, F (x) is a ν-self-concordant

barrier with ν = 1. 2

Let us present some simple properties of self-concordant barriers.

Theorem 4.2.1 Let F (x) be a self-concordant barrier. Then the function 〈c, x〉 + F (x) is
self-concordant on dom F .

Proof:
Since F (x) is a self-concordant function, we just refer to Corollary 4.1.1 2

Note that this properties is very important for path-following schemes.

Theorem 4.2.2 Let Fi are νi-self-concordant barriers, i = 1, 2. Then the function

F (x) = F1(x) + F2(x)

is a self-concordant barrier for the convex set Dom F = Dom F1
⋂

Dom F2 with the parameter
ν = ν1 + ν2.
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Proof:
Note that F is a standard self-concordant function in view of Theorem 4.1.1. Let us fix
x ∈ dom F . Then

max
u∈Rn

[2〈F ′(x)u, u〉 − 〈F ′′(x)u, u〉]

= max
u∈Rn

[2〈F ′
1(x)u, u〉 − 〈F ′′

1 (x)u, u〉+ 2〈F ′
1(x)u, u〉 − 〈F ′′

1 (x)u, u〉]

≤ max
u∈Rn

[2〈F ′
1(x)u, u〉 − 〈F ′′

1 (x)u, u〉] + max
u∈Rn

[2〈F ′
2(x)u, u〉 − 〈F ′′

2 (x)u, u〉] ≤ ν1 + ν2.

2

Finally, let us show that the value of the parameter of the self-concordant barrier is
invariant with respect to affine transformation of variables.

Theorem 4.2.3 Let A(x) = Ax+b be a linear operator: A(x) : Rn → Rm. Assume that the
function F (y) is a ν-self-concordant barrier. Then Φ(x) = F (A(x)) is a ν-self-concordant
barrier for the set

Dom Φ = {x ∈ Rn | A(x) ∈ Dom F}.
Proof:
The function Φ(x) is a standard self-concordant function in view of Theorem 4.1.2. Let us
fix x ∈ dom Φ. Then y = A(x) ∈ dom F . Note that for any u ∈ Rn we have:

〈Φ′(x), u〉 = 〈F ′(y), Au〉, 〈Φ′′(x)u, u〉 = 〈F ′′(y)Au,Au〉.

Therefore

max
u∈Rn

[2〈Φ′(x), u〉 − 〈Φ′′(x)u, u〉] = max
u∈Rn

[2〈F ′(y), Au〉 − 〈F ′′(y)Au,Au〉]

≤ max
v∈Rm

[2〈F ′(y), v〉 − 〈F ′′(y)v, v〉] ≤ ν. 2

4.2.3 Main Inequalities

Let us show that the local characteristics of the self-concordant barrier (the gradient, the
Hessian) provide us with global information about the structure of the domain.

Theorem 4.2.4 Let F (x) be a ν-self-concordant barrier. Then for any x ∈ dom F and
y ∈ Dom F we have:

〈F ′(x), y − x〉 ≤ ν. (4.2.6)

Proof:
Let x ∈ dom F and y ∈ Dom F . Consider the function

φ(t) = 〈F ′(x + t(y − x)), y − x〉, t ∈ [0, 1).
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If φ(0) ≤ 0, then (4.2.6) is trivial. Suppose that φ(0) > 0. Note that in view of (4.2.5) we
have:

φ′(t) = 〈F ′′(x + t(y − x))(y − x), y − x〉

≥ 1
ν
〈F ′(x + t(y − x)), y − x〉2 = 1

ν
φ2(t).

Therefore φ(t) increases and it is positive for t ∈ [0, 1). Moreover, for any t ∈ [0, 1) we have

− 1

φ(t)
+

1

φ(0)
≥ 1

ν
t.

This implies that 〈F ′(x), y − x〉 = φ(0) ≤ ν
t

for all t ∈ [0, 1). 2

Theorem 4.2.5 Let F (x) be a ν-self-concordant barrier. Then for any x ∈ dom F and
y ∈ Dom F such that

〈F ′(x), y − x〉 ≥ 0 (4.2.7)

we have:
‖ y − x ‖x≤ ν + 2

√
ν. (4.2.8)

Proof:
Denote r =‖ y − x ‖x. Let r >

√
ν. Consider the point yα = x + α(y − x) with α =

√
ν

r
< 1.

In view of our assumption (4.2.7) and inequality (4.1.7) we have:

ω ≡ 〈F ′(yα), y − x〉 ≥ 〈F ′(yα)− F ′(x), y − x〉

= 1
α
〈F ′(yα)− F ′(x), yα − x〉

≥ 1
α
· ‖yα−x‖2x

1+‖yα−x‖2x = α‖y−x‖2x
1+α‖y−x‖x

= r
√

ν
1+
√

ν
.

On the other hand, in view of (4.2.6), we obtain: (1− α)ω = 〈F ′(yα), y − yα〉 ≤ ν. Thus,

(
1−

√
ν

r

)
r
√

ν

1 +
√

ν
≤ ν,

and that is exactly (4.2.8). 2

We conclude this section by the analysis of one special point of a convex set.

Definition 4.2.3 Let F (x) be a ν-self-concordant barrier for the set Dom F . The point

x∗F = arg min
x∈dom F

F (x),

is called the analytic center of the convex set Dom F , generated by the barrier F (x).
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Theorem 4.2.6 Assume that the analytic center of a ν-self-concordant barrier F (x) exists.
Then for any x ∈ Dom F we have:

‖ x− x∗F ‖x∗F≤ ν + 2
√

ν.

On the other hand, for any x ∈ Rn such that ‖ x− x∗F ‖x∗F≤ 1 we have x ∈ Dom F .

Proof:
The first statement follows from Theorem 4.2.5 since F ′(x∗F ) = 0. The second statement
follows from Theorem 4.1.5. 2

Thus, the asphericity of the set Dom F with respect to x∗F , computed in the metric
‖ · ‖x∗F , does not exceed ν + 2

√
ν. It is well known that for any convex set in Rn there exists

a metric in which the asphericity of this set is less or equal to n (John Theorem). However,
we managed to estimate the asphericity in terms of the parameter of the barrier. This value
does not depend directly on the dimension of the space.

Note also, that if Dom F contains no straight line, the existence of x∗F implies the bound-
edness of Dom F . (Since then F ′′(x∗F ) is nondegenerate, see Theorem 4.1.3).

Corollary 4.2.1 Let Dom F be bounded. Then for any x ∈ dom F and v ∈ Rn we have:

‖ v ‖∗x≤ (ν + 2
√

ν) ‖ v ‖∗x∗F .

Proof:
Let us show that

‖ v ‖∗x≡ 〈[F ′′(x)]−1v, v〉1/2 = max{〈v, u〉 | 〈F ′′(x)u, u〉 ≤ 1}.

Indeed, in view of Theorem 3.1.17, the solution of this problem u∗ satisfies the condition:

v = λ∗F ′′(x)u∗, 〈F ′′(x)u∗, u∗〉 = 1.

Therefore 〈v, u∗〉 = 〈[F ′′(x)]−1v, v〉1/2. Further, in view of Theorem 4.1.5 and Theorem 4.2.6,
we have:

B ≡ {y ∈ Rn | ‖ y − x ‖x≤ 1} ⊆ Dom F

⊆ {y ∈ Rn | ‖ y − x∗F ‖x≤ ν + 2
√

ν} ≡ B∗.

Therefore, using again Theorem 4.2.6, we get the following:

‖ v ‖∗x = max{〈v, y − x〉 | y ∈ B} ≤ max{〈v, y − x〉 | y ∈ B∗}

= 〈v, x∗F − x〉+ (ν + 2
√

ν) ‖ v ‖∗x∗F .

Note that ‖ v ‖∗x=‖ −v ‖∗x. Therefore we can assume that 〈v, x∗F − x〉 ≤ 0. 2
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4.2.4 Path-following Scheme

Now we are ready to describe the class of mediators we are going to use. Those are the
standard minimization problems:

min{〈c, x〉 | x ∈ Q}, (4.2.9)

where Q ≡ Dom F is a bounded closed convex set with nonempty interior, and F is a ν-self-
concordant barrier.

Recall that we are going to solve (4.2.9) by following the central path:

x∗(t) = arg min
x∈dom F

f(t; x), (4.2.10)

where f(t; x) = t〈c, x〉 + F (x) and t ≥ 0. In view of the first-order optimality condition
(Theorem 1.2.1), any point of the central path satisfies the equation

tc + F ′(x∗(t)) = 0. (4.2.11)

Since the set Q is bounded, the exists the analytic center of this set, x∗F , exists and

x∗(0) = x∗F . (4.2.12)

In order to follow the central path, we are going to update the points, satisfying the approx-
imate centering condition:

λf(t;·)(x) ≡‖ f ′(t; x) ‖∗x=‖ tc + F ′(x) ‖∗x≤ β, (4.2.13)

where the centering parameter β is small enough.
Let us show that this is a reasonable goal.

Theorem 4.2.7 For any t > 0 we have

〈c, x∗(t)〉 − c∗ ≤ ν

t
, (4.2.14)

where c∗ is the optimal value of (4.2.9). If a point x satisfies the centering condition (4.2.13),
then

〈c, x〉 − c∗ ≤ 1
t

(
ν + (β+

√
ν)β

1−β

)
. (4.2.15)

Proof:
Let x∗ be a solution to (4.2.9). In view of (4.2.11) and (4.2.6) we have:

〈c, x∗(t)− x∗〉 = 1
t
〈F ′(x∗(t)), x∗ − x∗(t)〉 ≤ ν

t
.

Further, let x satisfy (4.2.13). Denote λ = λf(t;·)(x). Then

t〈c, x− x∗(t)〉 = 〈f ′(t; x)− F ′(x), x− x∗(t)〉 ≤ (λ +
√

ν) ‖ x− x∗(t) ‖x

≤ (λ +
√

ν) λ
1−λ

≤ (β+
√

ν)β
1−β
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in view of (4.2.4), Theorem 4.1.11 and (4.2.13). 2

Let us analyze now one step of a path-following scheme. Namely, assume that x ∈ dom F .
Consider the following iterate:

t+ = t + γ
‖c‖∗x ,

x+ = x− [F ′′(x)]−1(t+c + F ′(x)).





(4.2.16)

Theorem 4.2.8 Let x satisfy (4.2.13):

‖ tc + F ′(x) ‖∗x≤ β

with β < λ̄ = 3−√5
2

. Then for γ, such that

| γ |≤
√

β

1+
√

β
− β, (4.2.17)

we have again ‖ t+c + F ′(x+) ‖∗x≤ β.

Proof:

Denote λ0 =‖ tc + F ′(x) ‖∗x≤ β, λ1 =‖ t+c + F ′(x) ‖∗x and λ+ =‖ t+c + F ′(x+) ‖∗x+
. Then

λ1 ≤ λ0+ | γ |≤ β+ | γ |

and in view of Theorem 4.1.12 we have:

λ+ ≤
(

λ1

1− λ1

)2

≡ [ω′∗(λ1)]
2.

It remains to note that inequality (4.2.17) is equivalent to

ω′∗(β+ | γ |) ≤
√

β.

(recall that ω′(ω′∗(τ)) = τ , see Lemma 4.1.4). 2

Let us prove now that the increase of t in the scheme (4.2.16) is sufficiently large.

Lemma 4.2.1 Let x satisfy (4.2.13) then

‖ c ‖∗x≤
1

t
(β +

√
ν). (4.2.18)
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Proof:
Indeed, in view of (4.2.13) and (4.2.4), we have

t ‖ c ‖∗x=‖ f ′(t; x)− F ′(x) ‖∗x≤‖ f ′(t; x) ‖∗x + ‖ F ′(x) ‖∗x≤ β +
√

ν. 2

Let us fix now the reasonable values of parameters in the scheme (4.2.16). In the rest
part of this section we always assume that

β = 1
9
, γ =

√
β

1+
√

β
− β = 5

36
. (4.2.19)

We have proved that it is possible to follow the central path, using the rule (4.2.16). Note
that we can either increase or decrease the current value of t. The lower estimate for the
rate of increasing t is

t+ ≥
(

1 +
5

4 + 36
√

ν

)
· t,

and upper estimate for the rate of decreasing t is

t+ ≤
(

1− 5

4 + 36
√

ν

)
· t.

Thus, the general scheme for solving the problem (4.2.9) is as follows.

Main path-following scheme (4.2.20)

0. Set t0 = 0. Choose an accuracy ε > 0 and x0 ∈ dom F such that

‖ F ′(x0) ‖∗x0
≤ β.

1. kth iteration (k ≥ 0). Set

tk+1 = tk + γ
‖c‖∗xk

,

xk+1 = xk − [F ′′(xk)]
−1(tk+1c + F ′(xk)).

2. Stop the process if ν + (β+
√

ν)β
1−β

≤ εtk. 2

Let us present the complexity result on the above scheme.

Theorem 4.2.9 The scheme (4.2.20) terminates no more than after N steps, where

N ≤ O

(√
ν ln

ν ‖ c ‖∗x∗F
ε

)
.

Moreover, at the moment of termination we have 〈c, xN〉 − c∗ ≤ ε.
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Proof:
Note that r0 ≡‖ x0 − x∗F ‖x0≤ β

1−β
(see Theorem 4.1.11). Therefore, in view of Theorem

4.1.6 we have:
γ

t1
=‖ c ‖∗x0

≤ 1

1− r0

‖ c ‖∗x∗F≤
1− β

1− 2β
‖ c ‖∗x∗F .

Thus, tk ≥ γ(1−2β)
(1−β)‖c‖∗

x∗
F

(
1 + γ

β+
√

ν

)k−1
for all k ≥ 1. 2

Let us discuss now the above complexity estimate. The main term in the complexity is

7.2
√

ν ln
ν ‖ c ‖∗x∗F

ε
.

Note that the value ν ‖ c ‖∗x∗F estimates the variation of the linear function 〈c, x〉 over the

set Dom F (see Theorem 4.2.6). Thus, the ratio

ε

ν ‖ c ‖∗x∗F
can be seen as a relative accuracy of the solution.

The process (4.2.20) has one serious drawback. Very often we cannot easily satisfy its
starting condition

‖ F ′(x0) ‖∗x0
≤ β.

In such cases we need an additional process for finding an appropriate starting point. We
analyze the corresponding strategies in the next section.

4.2.5 Finding the analytic center

Thus, our goal now is to find an approximation to the analytic center of the set Dom F .
Hence, we should look at the following minimization problem:

min{F (x) | x ∈ dom F}, (4.2.21)

where F is a ν-self-concordant barrier. In view of the demand of the previous section, we are
interested in an approximate solution of this problem. Namely, we need to find x̄ ∈ dom F
such that

‖ F ′(x̄) ‖∗x̄≤ β,

where β ∈ (0, 1) is a parameter.
In order to reach our goal, we can apply two different minimization schemes. The first

one is just a straightforward implementation of the damped Newton method. The second
one is based on path-following approach.

Let us consider the first scheme.

0. Choose y0 ∈ dom F .
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1. kth iteration (k ≥ 0). Set

yk+1 = yk − [F ′′(yk)]
−1F ′(yk)

1+ ‖ F ′(yk) ‖∗yk

. (4.2.22)

2. Stop the process if ‖ F ′(yk) ‖∗yk
≤ β. 2

Theorem 4.2.10 The process (4.2.22) terminates no more than after

1

ω(β)
(F (y0)− F (x∗F ))

iterations.

Proof:
Indeed, in view of Theorem 4.1.10, we have:

F (yk+1) ≤ F (yk)− ω(λF (yk)) ≤ F (yk)− ω(β).

Therefore F (y0)− k ω(β) ≥ F (yk) ≥ F (x∗F ). 2

The implementation of the path-following approach is a little bit more complicated. Let
us choose some y0 ∈ dom F . Define the auxiliary central path as follows:

y∗(t) = arg min
y∈dom F

[−t〈F ′(y0), y〉+ F (y)],

where t ≥ 0. Note that this trajectory satisfies the equation

F ′(y∗(t)) = tF ′(y0). (4.2.23)

Therefore it connects two points, the starting point y0 and the analytic center x∗F :

y∗(1) = y0, y∗(0) = x∗F .

Note that we can follow this trajectory by the process (4.2.16) with decreasing t.
Let us estimate first the rate of convergence of the auxiliary central path y∗(t) to the

analytic center.

Lemma 4.2.2 For any t ≥ 0 we have:

‖ F ′(y∗(t)) ‖∗y∗(t)≤ (ν + 2
√

ν) ‖ F ′(x0) ‖∗x∗F ·t.



4.2. SELF-CONCORDANT BARRIERS 185

Proof:
This estimate follows from the equation (4.2.23) and Corollary 4.2.1. 2

Let us look now at the concrete scheme.

Auxiliary path-following process (4.2.24)

0. Choose y0 ∈ Dom F . Set t0 = 1.

1. kth iteration (k ≥ 0). Set

tk+1 = tk − γ
‖F ′(y0)‖∗yk

,

yk+1 = yk − [F ′′(yk)]
−1(tk+1F

′(y0) + F ′(yk)).

2. Stop the process if ‖ F ′(yk) ‖yk
≤

√
β

1+
√

β
. Set x̄ = yk − [F ′′(yk)]

−1F ′(yk). 2

Note that the above scheme follows the auxiliary central path y∗(t) as tk → 0. It updates
the points {yk} satisfying the approximate centering condition

‖ tkF
′(y0) + F ′(yk) ‖yk

≤ β.

The termination criterion of this process,

λk =‖ F ′(yk) ‖yk
≤

√
β

1 +
√

β
,

guarantees that ‖ F ′(x̄) ‖x̄≤
(

λk

1−λk

)2 ≤ β (see Theorem 4.1.12).
Let us derive a complexity estimate for this process.

Theorem 4.2.11 The process (4.2.24) terminates at most after

1
γ
(β +

√
ν) ln

[
1
γ
(ν + 2

√
ν) ‖ F ′(x0) ‖∗x∗F

]

iterations.

Proof:
Recall that we have fixed the parameters:

β =
1

9
, γ =

√
β

1 +
√

β
− β =

5

36
.

Note that t0 = 1. Therefore, in view of Theorem 4.2.8 and Lemma 4.2.1, we have:

tk+1 ≤
(

1− γ

β +
√

ν

)
tk ≤ exp

(
−γ(k + 1)

β +
√

ν

)
.
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Further, in view of Lemma 4.2.2, we obtain:

‖ F ′(yk) ‖∗yk
=‖ (tkF

′(x0) + F ′(yk))− tkF
′(x0) ‖∗yk

≤ β + tk ‖ F ′(x0) ‖∗yk
≤ β + tk(ν + 2

√
ν) ‖ F ′(x0) ‖∗x∗F .

Thus, the process is terminated at most when the following inequality holds:

tk(ν + 2
√

ν) ‖ F ′(x0) ‖∗x∗F≤
√

β

1 +
√

β
− β = γ. 2

Now we can discuss the complexity of both schemes. The principal term in the complexity
of the auxiliary path-following scheme is

7.2
√

ν[ln ν + ln ‖ F ′(x0) ‖∗x∗F ]

and for the auxiliary damped Newton method it is O(F (y0)− F (x∗F )). We cannot compare
these estimates directly. However, a more sophisticated analysis demonstrates the advantages
of the path-following approach. Note also that its complexity estimates naturally fits the
complexity estimate of the main path-following process. Indeed, if we apply (4.2.20) with
(4.2.24), we get the following complexity estimate for the whole process:

7.2
√

ν
[
2 ln ν + ln ‖ F ′(x0) ‖∗x∗F + ln ‖ c ‖∗x∗F + ln

1

ε

]
.

To conclude this section, note that for some problems it is difficult even to point out a
starting point y0 ∈ dom F . In such cases we should apply one more auxiliary minimization
process, which is similar to the process (4.2.24). We discuss this situation in the next section.

4.2.6 Problems with functional constraints

Let us consider the following minimization problem:

min f0(x),

s.t fj(x) ≤ 0, j = 1 . . .m,

x ∈ Q,

(4.2.25)

where Q is a simple bounded closed convex set with nonempty interior and all functions fj,
j = 0 . . . m, are convex. We assume that the problem satisfies the Slater condition: There
exists x̄ ∈ int Q such that fj(x̄) < 0 for all j = 1 . . . m.

Let us assume that we know an upper bound τ̄ such that f0(x) < τ̄ for all x ∈ Q. Then,
introducing two additional variables τ and κ, we can rewrite this problem in the standard
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form:
min τ,

s.t f0(x) ≤ τ,

fj(x) ≤ κ, j = 1 . . . m,

x ∈ Q, τ ≤ τ̄ , κ ≤ 0.

(4.2.26)

Note that we can apply the interior-point methods to a problem only if we are able to
construct the self-concordant barrier for the feasible set. In the current situation this means
that we should be able to construct the following barriers:

• A self-concordant barrier FQ(x) for the set Q.

• A self-concordant barrier F0(x, τ) for the epigraph of the objective function f0(x).

• Self-concordant barriers Fj(x, κ) for the epigraphs of the functional constraints fj(x).

Let us assume that we can do that. Then the resulting self-concordant barrier for the feasible
set of the problem (4.2.26) is as follows:

F̂ (x, τ, κ) = FQ(x) + F0(x, τ) +
m∑

j=1

Fj(x, κ)− ln(τ̄ − τ)− ln(−κ).

The parameter of this barrier is

ν̂ = νQ + ν0 +
m∑

j=1

νj + 2, (4.2.27)

where ν(·) are the parameters of the corresponding barriers.

Note that it could be still difficult to find a starting point from dom F̂ . This domain is
an intersection of the set Q with the epigraphs of the objective function and the constraints
and with two additional constraints τ ≤ τ̄ and κ ≤ 0. If we have a point x0 ∈ int Q, then
we can choose large enough τ0 and κ0 to guarantee

f0(x0) < τ0 < τ̄, fj(x0) < κ0, j = 1 . . .m,

but then the constraint κ ≤ 0 could be violated.
In order to simplify our analysis, let us change the notation. From now on we consider

the problem
min 〈c, z〉,

s.t. z ∈ S,

〈d, z〉 ≤ 0,

(4.2.28)
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where z = (x, τ, κ), 〈c, z〉 ≡ τ , 〈d, z〉 ≡ κ and S is the feasible set of the problem (4.2.26)
without the constraint κ ≤ 0. Note that we know a self-concordant barrier F (z) for the set
S and we can easily find a point z0 ∈ int S. Moreover, in view of our assumptions, the set

S(α) = {z ∈ S | 〈d, z〉 ≤ α}

is bounded and it has nonempty interior for α large enough.
The process of solving the problem (4.2.28) consists of three stages.
1. Choose a starting point z0 ∈ int S and an initial gap ∆ > 0. Set α = 〈d, z0〉 + ∆. If

α ≤ 0, then we can use the two-stage process described in Section 4.2.5. Otherwise we do
the following. First, we find an approximate analytic center of the set S(α), generated by
the barrier

F̃ (z) = F (z)− ln(α− 〈d, z〉).
Namely, we find a point z̃ satisfying the condition

λF̃ (z̃) ≡ 〈F̃ ′′(z̃)−1
(
F ′(z̃) + d

α−〈d,z̃〉
)
, F ′(z̃) + d

α−〈d,z̃〉〉1/2 ≤ β.

In order to generate such point, we can use the auxiliary schemes discussed in Section 4.2.5.
2. The next stage consists in following the central path z(t) defined by the equation

td + F̃ ′(z(t)) = 0, t ≥ 0.

Note that the previous stage provides us with a reasonable approximation to the analytic
center z(0). Therefore we can follow this path, using the process (4.2.16). This trajectory
leads us to the solution of the minimization problem

min{〈d, z〉 | z ∈ S(α)}.

Note that, in view of the Slater condition for problem (4.2.28), the optimal value of this
problem is strictly negative.

The goal of this stage consists in finding an approximation to the analytic center of the
set

S̄ = {z ∈ S(α) | 〈d, z〉 ≤ 0},
generated by the barrier

F̄ (z) = F̃ (z)− ln(−〈d, z〉).
This point, z∗, satisfies the following equation:

F̃ ′(z∗)− d

〈d, z∗〉 = 0.

Therefore z∗ is a point of the central path z(t). The corresponding value of the penalty
parameter t∗ is as follows:

t∗ = − 1

〈d, z∗〉 > 0.
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This stage ends up with a point z̄, satisfying the condition

λF̃ (z̄) ≡ 〈F̃ ′′(z̃)−1
(
F̃ ′(z̄)− d

〈d,z̄〉
)
, F̃ ′(z̄)− d

〈d,z̄〉〉1/2 ≤ β.

3. Note that F̄ ′′(z) > F̃ ′′(z). Therefore, the point z̄, computed at the previous stage
satisfies inequality

λF̄ (z̄) ≡ 〈F̄ ′′(z̃)−1
(
F̃ ′(z̄)− d

〈d,z̄〉
)
, F̃ ′(z̄)− d

〈d,z̄〉〉1/2 ≤ β.

This means that we have a good approximation of the analytic center of the set S̄ and we
can apply the main path-following scheme (4.2.20) to solve the problem

min{〈c, z〉 | z ∈ S̄}.
Clearly, this problem is equivalent to (4.2.28).

We omit the detailed complexity analysis of the above three-stage scheme. It could be
done similarly to the analysis of Section 4.2.5. The main term in the complexity of this
scheme is proportional to the product of

√
ν̂ (see (4.2.27)) with the sum of the logarithm of

the desired accuracy ε and the logarithms of some structural characteristics of the problem
(size of the region, deepness of the Slater condition, etc.).

Thus, we have shown that we can apply the efficient interior point methods to all prob-
lems, for which we can point out some self-concordant barriers for the basic feasible set Q
and for the epigraphs of the functional constraints. Our main goal now is to describe the
classes of convex problems, for which such barriers can be constructed in a computable form.
Note that we have an exact characteristic of the quality of a self-concordant barrier. That
is the value of its parameter: The smaller it is, the more efficient will be the correspond-
ing path-following scheme. In the next section we discuss our possibilities in applying the
developed theory to concrete problems.

4.3 Applications of Structural Programming

(Bounds on the parameter of a self-concordant barrier; Linear and Quadratic Programming;
Semidefinite Programming; Extremal Ellipsoids; Separable Problems; Geometric Program-
ming; Approximation in Lp norms; Choice of the Optimization Scheme.)

4.3.1 Bounds on the parameter of a self-concordant barrier

In the previous section we have discussed a path-following scheme for solving the following
problem:

min
x∈Q

〈c, x〉, (4.3.1)

where Q is a closed convex set with nonempty interior, for which we know a ν-self-concordant
barrier F (x). Using such barrier, we can solve (4.3.1) in O

(√
ν · ln 1

ε

)
iterations of a path-

following scheme. Recall that the most difficult part of each iteration is the solution of a
system of linear equations.
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In this section we study the limits of the applicability of our approach. We will discuss the
lower and upper bounds for the parameters of the self-concordant barriers; we will discuss the
concrete problem instances, for which the mediator (4.3.1) can be created in a computable
form. Let us start from the lower bounds.

Lemma 4.3.1 Let f(t) be a ν-self-concordant barrier for the interval (α, β) ⊂ R1, α < β <
∞. Then

ν ≥ κ ≡ sup
t∈(α,β)

(f ′(t))2

f ′′(t)
≥ 1.

Proof:
Note that ν ≥ κ by definition. Let us assume that κ < 1. Since f(t) is a barrier for (α, β),
there exists a value ᾱ ∈ (α, β) such that f ′(t) > 0 for all t ∈ [ᾱ, β).

Consider the function φ(t) = (f ′(t))2
f ′′(t) , t ∈ [ᾱ, β). Then, since f ′(t) > 0, f(t) is self-

concordant and φ(t) ≤ κ < 1, we have:

φ′(t) = 2f ′(t)−
(

f ′(t)
f ′′(t)

)2

f ′′′(t) = f ′(t)


2− f ′(t)√

f ′′(t)
· f ′′′(t)
[f ′′(t)]3/2


 ≥ 2(1−√κ)f ′(t).

Hence, for all t ∈ [ᾱ, β) we obtain: φ(t) ≥ φ(ᾱ) + 2(1 − √
κ)(f(t) − f(ᾱ)). This is a

contradiction since f(t) is a barrier and φ(t) is bounded from above. 2

Corollary 4.3.1 Let F (x) be a ν-self-concordant barrier for Q ⊂ Rn. Then ν ≥ 1.

Proof:
Indeed, let x ∈ int Q. Since Q ⊂ Rn, there is a nonzero direction u ∈ Rn such that the
line {y = x + tu, t ∈ R1} intersects the boundary of the set Q. Therefore, considering the
function f(t) = F (x + tu), and using Lemma 4.3.1, we get the result. 2

Let us prove a simple lower bound for the parameters of self-concordant barriers for
unbounded sets.

Let Q be a closed convex set with nonempty interior. Consider x̄ ∈ int Q. Assume that
there is a set of recession directions {p1, . . . , pk}:

x̄ + αpi ∈ Q ∀α ≥ 0.

Theorem 4.3.1 Let the positive coefficients {βi}k
i=1 satisfy the condition

x̄− βi pi /∈ int Q, i = 1, . . . , k.

If for some positive α1, . . . , αk we have ȳ = x̄ − k∑
i=1

αipi ∈ Q, then the parameter ν of any

self-concordant barrier for Q satisfies the inequality:

ν ≥
k∑

i=1

αi

βi

.
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Proof:
Let F (x) be a ν-self-concordant barrier for the set Q. Since pi is a recession direction, we
have:

〈F ′(x̄),−pi〉 ≥ 〈F ′′(x̄)pi, pi〉1/2 ≡‖ pi ‖x̄,

(since otherwise the function f(t) = F (x̄ + tp) attains its minimum; see Theorem 4.1.9).
Note that x̄− βi pi /∈ Q. Therefore, in view of Theorem 4.1.5, the norm of the direction

pi is large enough: βi ‖ pi ‖x̄≥ 1. Hence, in view of Theorem 4.2.4, we obtain:

ν ≥ 〈F ′(x̄), ȳ − x̄〉 = 〈F ′(x̄),−
k∑

i=1

αipi〉 ≥
k∑

i=1

αi ‖ pi ‖x̄≥
k∑

i=1

αi

βi

.

2

Let us present now an existence theorem for the self-concordant barriers. Consider a
closed convex set Q, int Q 6= ∅, and assume that Q contains no straight line. Let x̄ ∈ int Q.
Define the polar set of Q with respect to x̄:

P (x̄) = {s ∈ Rn | 〈s, x− x̄〉 ≤ 1, ∀x ∈ Q}.

It can be proved that for any x ∈ int Q the set P (x) is a bounded closed convex set with
nonempty interior. Denote V (x) = voln P (x).

Theorem 4.3.2 There exist absolute constants c1 and c2, such that the function

U(x) = c1 · ln V (x)

is a (c2 · n)-self-concordant barrier for Q. 2

The function U(x) is called the universal barrier for the set Q. Note that the analytical

complexity of the problem (4.3.1), equipped by the universal barrier, is O
(√

n · ln 1
ε

)
. Recall

that such efficiency estimate is impossible, if we use local black-box oracle (see Theorem
3.2.5).

The above result has mainly a theoretical interest. In general, the universal barrier
U(x) cannot be computed easily. However, Theorem 4.3.2 demonstrates, that such barriers,
in principal, can be found for any convex set. Thus, the applicability of our approach is
restricted only by the abilities of constructing a computable self-concordant barrier, hopefully
with a small value of the parameter. This process, the creation of the mediator of the initial
problem, can be hardly described in a formal way. For each concrete problem there could be
many different mediators, and we should choose the best one, taking into account the value
of the parameter of the self-concordant barrier, the complexity of computing its gradient
and Hessian, and the complexity of the solution of the corresponding Newton system. In the
rest part of this section we will see, how that can be done for some standard formulations of
Convex Programming.
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4.3.2 Linear and Quadratic Programming

Let us start from Linear Programming problem:

min
x∈Rn

〈c, x〉

s.t Ax = b,

x(i) ≥ 0, i = 1 . . . n, (⇔ x ∈ Rn
+)

(4.3.2)

where A is an (m × n)-matrix, m < n. The inequalities in this problem define the positive
orthant in Rn. This set can be equipped by the following self-concordant barrier:

F (x) = −
n∑

i=1

ln x(i), ν = n,

(see Example 4.2.1 and Theorem 4.2.2). This barrier is called the standard logarithmic
barrier for Rn

+.

In order to solve the problem (4.3.2), we have to use the restriction of the barrier F (x)
onto the affine subspace {x : Ax = b}. Since this restriction is an n-self-concordant

barrier (see Theorem 4.2.3), the complexity estimate for the problem (4.3.2) is O
(√

n · ln 1
ε

)

iterations of a path-following scheme.

Let us prove that the standard logarithmic barrier is optimal for Rn
+.

Lemma 4.3.2 The parameter ν of any self-concordant barrier for Rn
+ satisfies the inequality

ν ≥ n.

Proof:

Let us choose
x̄ = e ≡ (1, . . . , 1) ∈ int Rn

+,

pi = ei, i = 1, . . . , n,

where ei is the ith coordinate ort of Rn. Clearly, the conditions of Theorem 4.3.1 are satisfied

with αi = βi = 1, i = 1, . . . , n. Therefore ν ≥ n∑
i=1

αi

βi
= n. 2

Note that the above lower bound is valid only for the entire set Rn
+. The lower bound

for the intersection {x ∈ Rn
+ | Ax = b} is better than n.

Let us look now at the Quadratic Programming problem:

min
x∈Rn

q0(x) = α0 + 〈a0, x〉+ 1
2
〈A0x, x〉

s.t qi(x) = αi + 〈ai, x〉+ 1
2
〈Aix, x〉 ≤ βi, i = 1, . . . , m,

(4.3.3)
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where Ai are some positive semidefinite (n×n)-matrices. Let us rewrite this problem in the
standard form:

min
x,τ

τ

s.t q0(x) ≤ τ,

qi(x) ≤ βi, i = 1, . . . , m,

x ∈ Rn, τ ∈ R1.

(4.3.4)

The feasible set of this problem can be equipped by the following self-concordant barrier:

F (x, τ) = − ln(τ − q0(x))−
m∑

i=1

ln(βi − qi(x)), ν = m + 1,

(see Example 4.2.1, and Theorem 4.2.2). Thus, the complexity estimate for the problem

(4.3.3) is O
(√

m + 1 · ln 1
ε

)
iterations of a path-following scheme. Note this estimate does

not depend on n.
In many applications the functional components of the problem include the nonsmooth

quadratic terms of the form ‖ Ax− b ‖. Let us show that we can treat such terms using the
interior-point technique.

Lemma 4.3.3 The function F (x, t) = − ln(t2− ‖ x ‖2) is a 2-self-concordant barrier for the
convex set K2 = {(x, t) ∈ Rn+1 | t ≥‖ x ‖}5.

Proof:
Let us fix a point z = (x, t) ∈ int K2 and a nonzero direction u = (h, τ) ∈ Rn+1. Denote
ω(α) = (t + ατ)2− ‖ x + αh ‖2. We need to compare the derivatives of the function

φ(α) = F (z + αu) = − ln ω(α)

at α = 0. Denote φ(·) = φ(·)(0), ω(·) = ω(·)(0). Then

ω′ = 2(tτ − 〈x, h〉), ω′′ = 2(τ 2− ‖ h ‖2),

φ′ = −ω′
ω

, φ′′ =
(

ω′
ω

)2 − ω′′
ω

, φ′′′ = 3ω′ω′′
ω2 − 2

(
ω′
ω

)3
.

Note the inequality 2φ′′ ≥ (φ′)2 is equivalent to (ω′)2 ≥ 2ωω′′. Thus, we need to prove that
for any (h, τ) we have

(tτ − 〈x, h〉)2 ≥ (t2− ‖ x ‖2)(τ 2− ‖ h ‖2). (4.3.5)

Clearly, we can restrict ourselves by | τ |>‖ h ‖ (otherwise the right-hand side of the above
inequality is nonpositive). Moreover, in order to minimize the left-hand side, we should chose

5Depending on the field, this set has different names: Lorentz cone, ice-cream cone, second-order cone.
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sign τ = sign 〈x, h〉 (thus, let τ > 0), and 〈x, h〉 =‖ x ‖ · ‖ h ‖. Substituting these values in
(4.3.5), we get a valid inequality.

Finally, since 0 ≤ ωω′′
(ω′)2 ≤ 1

2
and [1− ξ]3/2 ≥ 1− 3

2
ξ, we get the following:

| φ′′′ |
(φ′′)3/2

= 2
| ω′ | · | (ω′)2 − 3

2
ωω′′ |

[(ω′)2 − ωω′′]3/2
≤ 2.

2

Let us prove that the barrier described in the above statement is optimal for the second-
order cone.

Lemma 4.3.4 The parameter ν of any self-concordant barrier for the set K2 satisfies the
inequality ν ≥ 2.

Proof:
Let us choose z̄ = (0, 1) ∈ int K2 and some h ∈ Rn, ‖ h ‖= 1. Define

p1 = (h, 1), p2 = (−h, 1), α1 = α2 = 1
2
, β1 = β2 = 1

2
.

Note that for all γ ≥ 0 we have z̄ + γpi = (±γh, 1 + γ) ∈ K2 and

z̄ − βipi = (±1
2
h, 1

2
) ∈ ∂K,

z̄ − α1p1 − α2p2 = (−1
2
h + 1

2
h, 1− 1

2
− 1

2
) = 0 ∈ K2.

Therefore, the conditions of Theorem 4.3.1 are satisfied and ν ≥ α1

β1
+ α2

β2
= 2. 2

4.3.3 Semidefinite Programming

In Semidefinite Programming the decision variables are some matrices. Let X = {x(i,j)}j=1,n
i=1,n

be a symmetric n× n-matrix (notation: X ∈ Sn×n). The linear space Sn×n can be provided
by the following inner product: for any X,Y ∈ Sn×n we define

〈X,Y 〉F =
n∑

i=1

n∑

j=1

x(i,j)y(i,j), ‖ X ‖F = 〈X, X〉1/2
F .

(Sometimes the value ‖ X ‖F is called the Frobenius norm of matrix X.) For two matrices
X and Y ∈ Sn×n we have the following useful identities:

〈X, Y · Y 〉F =
n∑

i=1

n∑
j=1

x(i,j)
n∑

k=1
y(i,k)y(j,k) =

n∑
i=1

n∑
j=1

n∑
k=1

x(i,j)y(i,k)y(j,k)

=
n∑

k=1

n∑
j=1

y(k,j)
n∑

i=1
x(j,i)y(i,k) =

n∑
k=1

n∑
j=1

y(k,j)(XY )(j,k)

=
n∑

k=1
(Y XY )(k,k) = Trace (Y XY ) = 〈Y XY, In〉F .

(4.3.6)
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In the Semidefinite Programming Problems the nontrivial part of constraints is formed
by the cone of positive semidefinite n × n-matrices Pn ⊂ Sn×n. Recall that X ∈ Pn if and
only if 〈Xu, u〉 ≥ 0 for any u ∈ Rn. If 〈Xu, u〉 > 0 for all nonzero u, we call X positive
definite. Such matrices form the interior of the cone Pn. Note that Pn is a convex closed set.

The general formulation of the Semidefinite Programming Problem is as follows:

min 〈C, X〉F

s.t 〈Ai, X〉F = bi, i = 1 . . . m,

X ∈ Pn,

(4.3.7)

where C and Ai belong to Sn×n. In order to apply a path-following scheme to this problem,
we need a self-concordant barrier for the cone Pn.

Let a matrix X belong to intPn. Denote F (X) = − ln det X. Clearly

F (X) = − ln
n∏

i=1

λi(X),

where {λi(X)}n
i=1 is the set of eigenvalues of matrix X.

Lemma 4.3.5 The function F (X) is convex and F ′(X) = −X−1. For any direction ∆ ∈
Sn×n we have:

〈F ′′(X)∆, ∆〉F =‖ X−1/2∆X−1/2 ‖2
F = Trace [X−1/2∆X−1/2]2,

D3F (x)[∆, ∆, ∆] = −2〈In, [X
−1/2∆X−1/2]3〉F = −2Trace [X−1/2∆X−1/2]3.

Proof:
Let us fix some ∆ ∈ Sn×n and X ∈ intPn such that X + ∆ ∈ Pn. Then

F (X + ∆)− F (X) = − ln det(X + ∆)− ln det X = − ln det(In + X−1/2∆X−1/2)

≥ − ln
[

1
n
Trace (In + X−1/2∆X−1/2)

]n

= −n ln
[
1 + 1

n
〈In, X−1/2∆X−1/2〉F

]

≥ −〈In, X
−1/2∆X−1/2〉F = −〈X−1, ∆〉F .

Thus, −X−1 ∈ ∂F (X). Therefore F is convex (Lemma 3.1.6) and F ′(x) = −X−1 (Lemma
3.1.7).

Further, consider the function φ(α) ≡ 〈F ′(X + α∆), ∆〉F , α ∈ [0, 1]. Then

φ(α)− φ(0) = 〈X−1 − (X + α∆)−1, ∆〉F = 〈(X + α∆)−1[(X + α∆)−X]X−1, ∆〉F

= α〈(X + α∆)−1∆X−1, ∆〉F .
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Thus, φ′(0) = 〈F ′′(X)∆, ∆〉F = 〈X−1∆X−1, ∆〉F .
The last expression can be proved in a similar way by differentiating the function ψ(α) =

〈(X + α∆)−1∆(X + α∆)−1, ∆〉F . 2

Theorem 4.3.3 The function F (X) is an n-self-concordant barrier for the cone Pn.

Proof:
Let us fix X ∈ intPn and ∆ ∈ Sn×n. Denote Q = X−1/2∆X−1/2 and λi = λi(Q), i = 1, . . . , n.
Then, in view of Lemma 4.3.5 we have:

−〈F ′(X), ∆〉F =
n∑

i=1

λi, 〈F ′′(X)∆, ∆〉F =
n∑

i=1

λ2
i , D3F (X)[∆, ∆, ∆] = −2

n∑

i=1

λ3
i .

Using two standard inequalities (
n∑

i=1
λi)

2 ≤ n
n∑

i=1
λ2

i and | n∑
i=1

λ3
i |≤ [

n∑
i=1

λ2
i ]

3/2, we obtain

〈F ′(X), ∆〉2F ≤ n〈F ′′(X)∆, ∆〉F , | D3F (X)[∆, ∆, ∆] |≤ 2〈F ′′(X)∆, ∆〉3/2
F .

2

Let us prove that F (X) = − ln det X is the optimal barrier for the cone Pn.

Lemma 4.3.6 The parameter ν of any self-concordant barrier for the cone Pn satisfies the
inequality ν ≥ n.

Proof:
Let us choose X̄ = In ∈ intPn and the directions Pi = eie

T
i , i = 1, . . . , n, where ei is the ith

coordinate ort of Rn. Note that for any γ ≥ 0 we have In + γPi ∈ intPn. Moreover,

In − eie
T
i ∈ ∂Pn, In −

n∑

i=1

eie
T
i = 0 ∈ Pn.

Therefore, the conditions of Theorem 4.3.1 are satisfied with αi = βi = 1, i = 1, . . . , n, and

we obtain ν ≥ n∑
i=1

αi

βi
= n. 2

Same as in Linear Programming problem (4.3.2), in problem (4.3.7) we need to use the
restriction of F (X) onto the set {X : 〈Ai, X〉F = bi, i = 1 . . .m}. This restriction is
an n-self-concordant barrier in view of Theorem 4.2.3. Thus, the complexity estimate of
the problem (4.3.7) is O

(√
n · ln 1

ε

)
iterations of a path-following scheme. Note that this

estimate is very encouraging since the dimension of the problem (4.3.7) is 1
2
n(n + 1).

In many important applications we can use the barrier − ln det(·) for treating some
functions of eigenvalues. Let, for example, a matrix A(x) ∈ Sn×n depend linearly on x.
Then the convex region

{(x, t) | max
1≤i≤n

λi(A(x)) ≤ t},
can be described by the self-concordant barrier F (x, t) = − ln det(tIn−A(x)). The value of
the parameter of this barrier is equal to n.
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4.3.4 Extremal ellipsoids

In some applications we are interested in approximating some sets by ellipsoids. Let us
consider the most typical situations.

Circumscribed ellipsoid.

Given by a set of points a1, . . . , am ∈ Rn, find an ellipsoid W , which contains all
pointa {ai} and which volume is as small as possible.

Let us pose this problem in a formal way. First of all note, that any bounded ellipsoid
W ⊂ Rn can be represented as follows:

W = {x ∈ Rn | x = H−1(v + u), ‖ u ‖≤ 1},
where H ∈ intPn and v ∈ Rn. Then the inclusion a ∈ W is equivalent to the inequality
‖ Ha− v ‖≤ 1. Note also that

voln W = voln B2(0, 1) det H−1 =
voln B2(0, 1)

det H
.

Thus, our problem is as follows:

min
H,v,τ

τ,

s.t. − ln det H ≤ τ,

‖ Hai − v ‖≤ 1, i = 1, . . . , m,

H ∈ Pn, v ∈ Rn, τ ∈ R1.

(4.3.8)

In order to solve this problem with the interior-point schemes, we need a self-concordant
barrier for the feasible set. At this moment we know such barriers for all components of this
problem except the first inequality.

Lemma 4.3.7 The function − ln det H−ln(τ+ln det H) is an (n+1)-self-concordant barrier
for the set {(H, τ) ∈ Sn×n ×R1 | τ ≥ − ln det H, H ∈ Pn}. 2

Thus, we can use the following barrier:

F (H, v, τ) = − ln det H − ln(τ + ln det H)− m∑
i=1

ln(1− ‖ Hai − v ‖2),

ν = m + n + 1.

The corresponding efficiency estimate is O
(√

m + n + 1 · ln 1
ε

)
iterations of a path-following

scheme.
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Inscribed ellipsoid with fixed center.

Let Q be a convex polytope defined by a set of linear inequalities:

Q = {x ∈ Rn | 〈ai, x〉 ≤ bi, i = 1, . . . , m},
and let v ∈ int Q. Find an ellipsoid W , centered at v, such that W ⊂ Q and
which volume is as large as possible.

Let us fix some H ∈ intPn. We can represent the ellipsoid W as follows:

W = {x ∈ Rn | 〈H−1(x− v), x− v〉 ≤ 1}.
We need the following simple result.

Lemma 4.3.8 Let 〈a, v〉 < b. The inequality 〈a, x〉 ≤ b is valid for any x ∈ W if and only
if 〈Ha, a〉 ≤ (b− 〈a, v〉)2.

Proof:
In Corollary 4.2.1 we have shown that max

u
{〈a, u〉 | 〈H−1u, u〉 ≤ 1} = 〈Ha, a〉1/2. Therefore

we need to ensure

max
x∈W

〈a, x〉 = max
x∈W

[〈a, x− v〉+ 〈a, v〉] = 〈a, v〉+ max
x
{〈a, u〉 | 〈H−1u, u〉 ≤ 1}

= 〈a, v〉+ 〈Ha, a〉1/2 ≤ b,

This proves our statement since 〈a, v〉 < b. 2

Note that voln W = voln B2(0, 1)[det H−1]1/2 = voln B2(0,1)

[det H]1/2 . Hence, our problem is as

follows
min
H,τ

τ,

s.t. − ln det H ≤ τ,

〈Hai, ai〉 ≤ (bi − 〈ai, v〉)2, i = 1, . . . ,m,

H ∈ Pn, τ ∈ R1.

(4.3.9)

In view of Lemma 4.3.7, we can use the following self-concordant barrier:

F (H, τ) = − ln det H − ln(τ + ln det H)− m∑
i=1

ln[(bi − 〈ai, v〉)2 − 〈Hai, ai〉],

ν = m + n + 1.

The efficiency estimate of the corresponding path-following scheme is O
(√

m + n + 1 · ln 1
ε

)

iterations.
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Inscribed ellipsoid with free center.

Let Q be a convex polytope defined by a set of linear inequalities:

Q = {x ∈ Rn | 〈ai, x〉 ≤ bi, i = 1, . . . , m},

and let int Q 6= ∅. Find an ellipsoid W ⊂ Q, which has the maximal volume.

Let G ∈ intPn, v ∈ int Q. We can represent W as follows:

W = {x ∈ Rn | ‖ G−1(x− v) ‖≤ 1} ≡ {x ∈ Rn | 〈G−2(x− v), x− v〉 ≤ 1}.

In view of Lemma 4.3.8, the inequality 〈a, x〉 ≤ b is valid for any x ∈ W if and only if
‖ Ga ‖2≡ 〈G2a, a〉 ≤ (b− 〈a, v〉)2. That gives a convex region for (G, v): ‖ Ga ‖≤ b− 〈a, v〉.

Note that voln W = voln B2(0, 1) det G−1 = voln B2(0,1)
det G

. Therefore our problem can be
written as follows:

min
G,v,τ

τ,

s.t. − ln det G ≤ τ,

‖ Gai ‖≤ bi − 〈ai, v〉, i = 1, . . . , m,

G ∈ Pn, v ∈ Rn, τ ∈ R1.

(4.3.10)

In view of Lemmas 4.3.7 and 4.3.3, we can use the following self-concordant barrier:

F (G, v, τ) = − ln det G− ln(τ + ln det G)− m∑
i=1

ln[(bi − 〈ai, v〉)2− ‖ Gai ‖2],

ν = 2m + n + 1.

The corresponding efficiency estimate is O
(√

2m + n + 1 · ln 1
ε

)
iterations of a path-following

scheme.

4.3.5 Separable Programming

In the Separable Programming Problems all nonlinear terms are presented by univariate
functions. A general formulation of such problem looks as follows:

min
x∈Rn

q0(x) =
m0∑
j=1

α0,jf0,j(〈a0,j, x〉+ b0,j)

s.t qi(x) =
mi∑
j=1

αi,jfi,j(〈ai,j, x〉+ bi,j) ≤ βi, i = 1 . . . m,

(4.3.11)
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where αi,j are some positive coefficients, ai,j ∈ Rn and fi,j(t) are convex functions of one
variable. Let us rewrite this problem in the standard form:

min
x,t,τ

τ0

s.t fi,j(〈ai,j, x〉+ bi,j) ≤ ti,j, i = 0 . . .m, j = 1 . . . mi,

mi∑
j=1

αi,jti,j ≤ τi, i = 0, . . . , m,

τi ≤ βi, i = 1, . . . , m,

x ∈ Rn, τ ∈ Rm+1, t ∈ RM ,

(4.3.12)

where M =
m∑

i=0
mi. Thus, in order to construct a self-concordant barrier for the feasible set

of this problem, we need the barriers for the epigraphs of the univariate convex functions
fi,j. Let us point out such barriers for several important functions.

Logarithm and exponent.

The barrier F1(x, t) = − ln x− ln(ln x + t) is a 2-self-concordant barrier for the set

Q1 = {(x, t) ∈ R2 | x > 0, t ≥ − ln x}

and the barrier F2(x, t) = − ln t− ln(ln t− x) is a 2-self-concordant barrier for the set

Q2 = {(x, t) ∈ R2 | t ≥ ex}.

Entropy function.

The barrier F3(x, t) = − ln x− ln(t− x ln x) is a 2-self-concordant barrier for the set

Q3 = {(x, t) ∈ R2 | x ≥ 0, t ≥ x ln x}.

Increasing power functions.

The barrier F4(x, t) = −2 ln t− ln(t2/p − x2) is a 4-self-concordant barrier for the set

Q4 = {(x, t) ∈ R2 | t ≥| x |p}, p ≥ 1,

and the barrier F5(x, t) = − ln x− ln(tp − x) is a 2-self-concordant barrier for the set

Q5 = {(x, t) ∈ R2 | x ≥ 0, tp ≥ x}, 0 < p ≤ 1.
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Decreasing power functions.

The barrier F6(x, t) = − ln t− ln(x− t−1/p) is a 2-self-concordant barrier for the set

Q6 =
{
(x, t) ∈ R2 | x > 0, t ≥ 1

xp

}
, p ≥ 1,

and the barrier F7(x, t) = − ln x− ln(t− x−p) is a 2-self-concordant barrier for the set

Q7 =
{
(x, t) ∈ R2 | x > 0, t ≥ 1

xp

}
, 0 < p < 1.

We omit the proofs of the above statements since they are rather technical. It can be
also shown that the barriers for all of these sets, except Q4, are optimal. Let us prove this
statement for the sets Q6, Q7.

Lemma 4.3.9 The parameter ν of any self-concordant barrier for the set

Q =

{
(x(1), x(2)) ∈ R2 | x(1) > 0, x(2) ≥ 1

(x(1))p

}
,

p > 0, satisfies the inequality ν ≥ 2.

Proof:
Let us fix some γ > 1 and choose x̄ = (γ, γ) ∈ int Q. Denote

p1 = e1, p2 = e2, β1 = β2 = γ, α1 = α2 = α ≡ γ − 1.

Then x̄ + ξei ∈ Q for any ξ ≥ 0 and

x̄− βe1 = (0, γ) /∈ Q, x̄− βe2 = (γ, 0) /∈ Q,

x̄− α(e1 + e2) = (γ − α, γ − α) = (1, 1) ∈ Q.

Therefore, the conditions of Theorem 4.3.1 are satisfied and ν ≥ α1

β1
+ α2

β2
= 2γ−1

γ
. This proves

the statement since γ can be chosen arbitrary large. 2

Let us conclude our discussion of Separable Programming by two examples.

Geometric Programming.

The initial formulation of such problems is as follows:

min
x∈Rn

q0(x) =
m0∑
j=1

α0,j

n∏
j=1

(x(j))σ
(j)
0,j

s.t qi(x) =
mi∑
j=1

αi,j

n∏
j=1

(x(j))σ
(j)
i,j ≤ 1, i = 1 . . .m,

x(j) > 0, j = 1, . . . , n,

(4.3.13)
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where αi,j are some positive coefficients. Note that the problem (4.3.13) is not convex.

Let us introduce the vectors ai,j = (σ
(1)
i,j , . . . , σ

(n)
i,j ) ∈ Rn, and change the variables: x(i) =

ey(i)
. Then (4.3.13) is transforming into a convex separable problem.

min
y∈Rn

m0∑
j=1

α0,j exp(〈a0,j, y〉)

s.t
mi∑
j=1

αi,j exp(〈ai,j, y〉) ≤ 1, i = 1 . . .m.

(4.3.14)

The complexity of solving (4.3.14) by a path-following scheme is O

([
m∑

i=0
mi

]1/2

· ln 1
ε

)
.

Approximation in Lp norms.

The simplest problem of that type is as follows:

min
x∈Rn

m∑
i=1

| 〈ai, x〉 − b(i) |p

s.t α ≤ x ≤ β,

(4.3.15)

where p ≥ 1. Clearly, we can rewrite this problem in the equivalent standard form:

min
x,τ

τ (0),

s.t | 〈ai, x〉 − b(i) |p≤ τ (i), i = 1, . . . ,m,

m∑
i=1

τ (i) ≤ τ (0),

α ≤ x ≤ β,

x ∈ Rn, τ ∈ Rm+1.

(4.3.16)

The complexity of this problem is O
(√

m + n · ln 1
ε

)
iterations of a path-following scheme.

Thus, we have discussed the performance of the interior-point methods on several pure
problem formulations. However, it is important that we can apply these methods to the
mixed problems. For example, in problems (4.3.7) or (4.3.15) we can treat also the quadratic
constraints. To do that, we need just to construct the corresponding self-concordant barriers.
Such barriers are known for all important examples we meet in practical applications.

4.3.6 Choice of the minimization scheme

We have seen that many Convex Optimization problems can be solved by interior-point
methods. However, we know that the same problems can be solved by another general
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technique, the Nonsmooth Optimization methods. In general, we cannot say what is better,
since the answer depends on the individual structure of a concrete problem. Let us consider
a simple example.

Assume that we are going to solve a problem of finding the best approximation in Lp-
norms:

min
x∈Rn

m∑
i=1

| 〈ai, x〉 − b(i) |p

s.t α ≤ x ≤ β,

(4.3.17)

where p ≥ 1. And let we have two numerical methods available:

• The ellipsoid method (Section 3.2.6).

• The interior-point path-following scheme.

What scheme we should use? We can derive the answer from the complexity estimates of
the corresponding methods.

Let us estimate first the performance of the ellipsoid method on the problem (4.3.17).

Ellipsoid method

Number of iterations: O
(
n2 ln 1

ε

)
,

Complexity of the oracle: O(mn) operations,

Complexity of the iteration: O(n2) operations.

Total complexity: O
(
n3(m + n) ln 1

ε

)
operations.

The analysis of the path-following scheme is more complicated. First, we should form
the mediator and the corresponding self-concordant barrier:

min
x,τ,ξ

ξ,

s.t | 〈ai, x〉 − b(i) |p≤ τ (i), i = 1, . . . , m,

m∑
i=1

τ (i) ≤ ξ, α ≤ x ≤ β,

x ∈ Rn, τ ∈ Rm, ξ ∈ R1,

F (x, τ, ξ)) =
m∑

i=1
f(τ (i), 〈ai, x〉 − b(i))− n∑

i=1
[ln(x(i) − α(i)) + ln(β(i) − x(i))]

− ln(ξ − m∑
i=1

τ (i)),

(4.3.18)
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where f(y, t) = −2 ln t− ln(t2/p − y2).
We have seen that the parameter of the barrier F (x, τ, ξ) is ν = 4m+n+1. Therefore, the

number of iterations of the path-following scheme can be estimated as O
(√

4m + n + 1 ln 1
ε

)
.

At each iteration of the path-following scheme we need the gradient and the Hessian of
the barrier F (x, τ, ξ). Denote g1(y, t) = f ′y(y, t), g2(y, t) = f ′t(y, t). Then

F ′
x(x, τ, ξ) =

m∑
i=1

g1(τ
(i), 〈ai, x〉 − b(i))ai −

n∑
i=1

[
1

x(i)−α(i) − 1
β(i)−x(i)

]
ei,

F ′
τ (i)(x, τ, ξ) = g2(τ

(i), 〈ai, x〉 − b(i)) +
[
ξ − m∑

i=1
τ (i)

]−1

, F ′
ξ(x, τ, ξ) = −

[
ξ − m∑

i=1
τ (i)

]−1

.

Further, denoting h11(y, t) = f ′′yy(y, t), h12(y, t) = f ′′yt(y, t) and h22(y, t) = f ′′tt(y, t), we obtain:

F ′′
xx(x, τ, ξ) =

m∑

i=1

h11(τ
(i), 〈ai, x〉 − b(i))aia

T
i + diag

[
1

(x(i) − α(i))2
+

1

(β(i) − x(i))2

]
,

F ′′
τ (i)x(x, τ, ξ) = h12(τ

(i), 〈ai, x〉 − b(i))ai,

F ′′
τ (i),τ (i)(x, τ, ξ) = h22(τ

(i), 〈ai, x〉 − b(i)) +

(
ξ −

m∑

i=1

τ (i)

)−2

,

F ′′
x,ξ(x, τ, ξ) = 0, F ′′

τ (i),ξ(x, τ, ξ) = −
(
ξ −

m∑

i=1

τ (i)

)−2

, F ′′
ξ,ξ(x, τ, ξ) =

(
ξ −

m∑

i=1

τ (i)

)−2

.

Thus, the complexity of the oracle in the path-following scheme is O(mn2) arithmetic oper-
ations.

Let us estimate now the complexity of each iteration. The main source of the com-
putational efforts at the iteration is the solution of the Newton system. Denote κ =(
ξ − m∑

i=1
τ (i)

)−2

, si = 〈ai, x〉 − b(i), i = 1, . . . , n, and

Λ0 = diag
[

1
(x(i)−α(i))2

+ 1
(β(i)−x(i))2

]n

i=1
Λ1 = diag (h11(τ

(i), si))
m
i=1,

Λ2 = diag (h12(τ
(i), si))

m
i=1, D = diag (h22(τ

(i), si))
m
i=1.

Then, using the notation A = (a1, . . . , am), e = (1, . . . , 1) ∈ Rm, the Newton system can be
written in the following form:

[A(Λ0 + Λ1)A
T ]∆x + AΛ2∆τ = F ′

x(x, τ, ξ),

Λ2A
T ∆x + [D + κIm]∆τ + κe∆ξ = F ′

τ (x, τ, ξ),

κ〈e, ∆τ〉+ κ∆ξ = F ′
ξ(x, τ, ξ) + t,

where t is the penalty parameter. From the second equation we obtain

∆τ = [D + κIm]−1(F ′
τ (x, τ, ξ)− Λ2A

T ∆x− κe∆ξ).
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Substituting ∆τ in the first equation, we can express

∆x = [A(Λ0 +Λ1−Λ2
2[D +κIm]−1)AT ]−1{F ′

x(x, τ, ξ)−AΛ2[D +κIm]−1(F ′
τ (x, τ, ξ)−κe∆ξ)}.

Using these relations we can find ∆ξ from the last equation.
Thus, the Newton system can be solved in O(n3 + mn2) operations. This implies that

the total complexity of the path-following scheme can be estimated as

O
(
n2(m + n)3/2 · ln 1

ε

)

arithmetic operations. Comparing this estimate with that of the ellipsoid method, we con-
clude that the interior-point methods are more efficient if m is not too large, namely, if
m ≤ O(n2).
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