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Abstract

We propose a model-based off-policy learn-
ing method that can be used to evaluate any
target policy using data collected from arbi-
trary sources. The key of this method is a
set of linear action models (LAM) learned
from data. The method is simple to use.
First, a target policy tells what actions are
taken at some features and LAM project
what would happen for the actions. Second, a
convergent off-policy learning algorithm such
as LSTD and gradient TD algorithms eval-
uates the projected experience. We focus
on two off-policy learning algorithms with
LAM, i.e., the stochastic LAM-LSTD and
the deterministic LAM-LSTD. Empirical re-
sults show that the two LAM-LSTD algo-
rithms give more accurate predictions for var-
ious target policies than the on-policy LSTD
learning. LAM based off-policy learning al-
gorithms are also exclusively useful in diffi-
cult control tasks where one could not collect
sufficient “on-policy samples” for on-policy
learning. This work leads us to advocate us-
ing off-policy learning to evaluate many poli-
cies in place of on-policy learning, improving
the efficiency of using data.

1. Introduction

Off-policy learning, which aims to evaluate a pol-
icy based on the data generated/collected from an-
other policy, is an interesting problem in reinforce-
ment learning (RL) (Watkins, 1989; Sutton & Barto,
1998; Lagoudakis & Parr, 2003). Off-policy learning
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is a very important way of increasing our knowledge
about the world. The amazing feature of off-policy
learning is that a single stream of data from arbitrary
sources can provide us knowledge about many poli-
cies. Therefore off-policy learning is an important way
of improving the efficiency of using sample.

Though charming in definition, learning many policies
from a single-stream of data has rarely been practiced
in RL, mainly because off-policy learning has pitfalls
and is inherently hard. The difficulty lies in that the
distribution of the data is from the policy that gen-
erates/collects the data, which causes many RL al-
gorithms to diverge (Sutton & Barto, 1998). Impor-
tance sampling was first proposed to correct the dis-
tribution of data for off-policy learning (Precup et al.,
2001). However, it has a high variance in estima-
tion. Recently, several proposed gradient temporal
difference (TD) methods with linear function approx-
imation are proved to converge for off-policy learning
(Sutton et al., 2009).

In this paper, we study off-policy learning in an offline
setting, in which a data set of samples are collected
before hand using an arbitrary policy. We propose a
general approach for off-policy learning, which stands
out from existing off-policy learning solutions in that
it is model-based. The key component of this frame-
work is a set of approximate action models with linear
function approximation, which are called linear action
models(LAM) for short. LAM belong to the family
of linear models. Boyan built a compressed model for
the prediction problem, and gave a new interpreta-
tion for the previous LSTD (Bradtke & Barto, 1996),
and extended it to eligibility traces (Boyan, 2002). It
was shown that the fixed points of model-free and
model-based value function approximation are equiva-
lent given the same set of features (Parr et al., 2008).
LAM differs from these models in that it models the
effects of actions with linear function approximation.
LAM was first explored in a linear Dyna algorithm
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for online planning and control (Sutton et al., 2008).
In their algorithm, learning, modeling and planning
proceed simultaneously. Action selection in learning
and planning is performed according to LAM. How-
ever, their paper focused mainly on the on-policy pre-
diction problem, and LAM were only briefly studied.
They also used a gradient descent algorithm to learn
LAM, which is slow and requires tuning a step-size.
The gradient descent method is problematic also in
that the induced LAM can be biased because of the
choice of the step-size parameter.

Apparently LAM is policy-indepdent. It is this pol-
icy independence property that makes it suitable for
off-policy learning. Because of policy independence,
LAM-based off-policy learning does not have to use im-
portance sampling to correct the behavior/collection
policy for the target policy. So LAM is free of the high
variance caused by importance sampling. Because of
policy independence, LAM-based off-policy learning
considers the target policy not at the time of mod-
eling, but only when learning is requested. This clear
separation of modeling from learning is the key to the
simplicity and effectiveness of the proposed off-policy
learning solution. LAM-based off-policy learning is
simple to use. First, LAM are learned from a given
set of samples with some chosen features, using an
efficient least-squares method that can guarantee the
quality of LAM. Second, a target policy tells what ac-
tions are taken on some features. We then apply LAM
to project what would happen from these features ac-
cording to the policy. Third, we use an algorithm to
evaluate the projected experience. Notice the learning
is off-policy, so we need convergent off-policy learning
algorithms such as gradient TD algorithms or LSTD
algorithm. We focus on the use of LSTD since it is ef-
ficient in using samples, and does not require tuning a
step-size. However, other learning algorithms such as
gradient TD can also be used to evaluate the projected
experience by LAM. The emphasis of this paper is not
on the comparisons between LSTD and gradient TD
since it is already well known that least-squares meth-
ods are more data efficient (Bradtke & Barto, 1996;
Boyan, 2002; Xu et al., 2002).

We demonstrate that off-policy learning can be much
more accurate than on-policy learning. Our two off-
policy learning algorithms perform very well in evalu-
ating various target policies. In particular, for those
policies that are ill distributed, according to which
some actions are rarely taken or some states are rarely
visited, the advantages of our algorithms are very pro-
nounced. Notice that the problem is inherently hard
because of the rareness caused by the nature of these
policies. In a related rareness problem studied by

Algorithm 1 Learning LAM from a set of samples
using a least-squres method.

Input: a data set, D = {< φi, ai, φi+1, ri >}, or Ds =
{(si, ai, si+1, ri >}.
Output: a set of LAM, {< F a, fa >}.
Initialize Ha, Ea and ea for all a
for i = 1, 2, . . . , d do

Read the transition: < φi, ai, φi+1, ri >
if using Ds

Set φi = φ(si), φi+1 = φ(si+1)
end

for a = ai, update LAM of a by
Ha = Ha + φiφ

T
i

Ea = Ea + φi+1φ
T
i

ea = ea + φiri
end

for all a, solve LAM by least-squares:
F a

d = Ea(Ha)−1

fa
d = (Ha)−1ea

(Frank et al., 2008), rare events occur independently
of actions. The rareness we study in this paper is
caused by the policies themselves, and is much more
common in RL.

2. Learning LAM

Suppose the state space is denoted by S, and we have
N states. First we are given a data set of samples, D =
{< φi, ai, φi+1, ri >},

1 where φi is some feature at
which action ai is taken, φi+1 is the resulting feature,
and ri is the resulting reward, i = 1, 2, . . . , d, d =
|D|. The samples can be collected from a single policy
or many different policies, by a single agent or many
different agents. There is no restriction on the data
set. However, to guarantee the quality of LAM and off-
policy learning, the data set should contain sufficient
samples.

LAM are learned using linear function approximation.
Given n (n ≤ N) feature functions ϕj (·) : S 7→ R,
j = 1, . . . , n, the feature vector (feature for short)
of state i is φ(i) = [ϕ1(i), ϕ2(i), . . . , ϕn(i)]T . Let Φ
be the feature matrix whose entries are Φi,j = ϕj(i),
i = 1, . . . , N ; j = 1, . . . , n. We assume the columns of
Φ are linearly independent. Each LAM is composed
of a matrix and a vector, < F a

n×n, f
a
n×1 >, where F a

approximates the transition dynamics and fa approx-
imates the rewards of taking action a in the feature

1 Notice that the data set can also be the experience
of transitioning among states, Ds = {< si, ai, si+1, ri >},
where si, si+1 ∈ S.
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Algorithm 2 The stochastic LAM-LSTD algorithm:
a simulation-based-projection on/off-policy learning
with the pre-learned LAM. No iteration is required.

Input: a data set of features, Dφ = {φi}, a set of
LAM, {< F a, fa >} learned from D; and a target
policy π.
Output: a parameter vector θ for policy π.
for i = 1, 2, . . . , d do

Read φi

Select an action a according to π at φi

/* for on-policy learning, a = ai*/
φ̃i+1 = F aφi

r̃i = φT
i f

a

A = A+ φi(γφ̃i+1 − φi)
T

b = b+ φir̃i
end

θ = −A−1b

space. Algorithm 1 shows an efficient least-squares
method of learning LAM.

3. Off-policy Learning Algorithms with

LAM

3.1. A Simulation-based Method

The first algorithm, a simulation-based method, is
shown in Algorithm 2. The algorithm is run on a data
set of features, Dφ = {φi}. Thus at this stage the
transitioning experience is no longer necessary. In the
experiments, we set Dφ to be the set of features where
the transitioning samples were collected from. That is,
Dφ = {φi|φi ∈ D}. This, however, is not a constraint,
as one can choose freely for Dφ.

Notice that F aφ is the expected next feature, and
φT fa is the expected reward of taking a at φ. To
evaluate a policy with LAM, one follows the policy,
generating an action a at a feature φ, and do the pro-
jection operation, which gives the imaginary transition
experience, < φ, φT fa, F aφ >. Notice that evaluating
the imaginary experience is an off-policy learning prob-
lem. To guarantee convergence and data efficiency, we
use LSTD for policy evaluation in Algorithm 2.

Notice that Algorithm 2 can also be used for on-policy
learning, in which the target policy π is also the pol-
icy we used to collect the samples, i.e., π(φi) = ai,
i = 1, 2, . . . , d. On-policy learning can then be based
on the projected experience under the action selected
according to the policy.

For off-policy learning, Algorithm 2 can be used to
evaluate a target policy known beforehand, or a target

Algorithm 3 The deterministic LAM-LSTD algo-
rithm: an analytical-projection based off-policy learn-
ing with the pre-learned LAM. No iteration or simu-
lation is required.

Input, Output: the same as Algorithm 2
for i = 1, 2, . . . , d do

Read φi

Set φ̃π
i+1 = 0, r̃π

i = 0
for each action a
φ̃π

i+1 = φ̃π
i+1 + π(φi, a)F

aφi

r̃π
i = r̃π

i + π(φi, a)φ
T
i f

a

end

A = A+ φi(γφ̃
π
i+1 − φi)

T

b = b+ φir̃
π
i

end

θ = −A−1b

policy only known when processing samples, such as
greedy policies. In a recent paper (Yao, 2010), we
proposed approximate policy iteration using LAM. In
that case, learning is still off-policy, and the goal is
to evaluate the greedy/optimal policy. The focus of
this paper is on evaluation of various policies that are
generally not greedy or optimal.

3.2. A Deterministic Method

If the target policy is known, Algorithm 2 can be made
more efficient in projection. We can generate the next
feature and reward for a given feature under the target
policy, by taking advantage of the target policy and
LAM.

Given a feature, we can project the experience under
the target policy at once, without simulating step by
step. In particular, for a feature φi, the expected next
feature according to policy π is

φ̃π
i+1 =

∑

a

π(φi, a)F
aφi,

and the reward is

r̃π
i =

∑

a

π(φi, a)φ
T
i f

a.

Algorithm 3 shows this more efficient method. The al-
gorithm is deterministic and does not require any sim-
ulation. The algorithm can also be used for on-policy
learning if the collection policy (which is π) is known.
However, in practice, the samples may be from various
sources (e.g., collected by many agents following dif-
ferent policies), and hence the collection policy can be
unknown. In this case, Algorithm 3 is not applicable
for on-policy learning, and one has to use Algorithm
2.
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4. Empirical Results

4.1. Boyan MDP

The problem is slightly modified from Boyan chain
(Boyan, 2002). We interpret it as a MDP problem.
At each state, there are two actions available. Action
a1 “walks” the state i to state i−1. Action a2 “jumps”
state i to state i− 2 except that at state 1 it takes the
agent to state 0. Both actions are deterministic: tak-
ing an action leads to the intended state without any
problem.

We consider evaluating the following three target poli-
cies:

policy 1: walking with probability 50%, and jumping
with 50% at each state (this is the original policy of
Boyan chain); and

policy 2: walking with probability 90%, and jumping
with 10% at each state;

policy 3: walking with probability 0.00001%, and
jumping with 99.99999% at each state.

We compared on/off-policy learning of the three poli-
cies. For on-policy learning of a policy, samples were
collected from a number of episodes following the pol-
icy. For off-policy learning, samples were collected in
a number of episodes following a purely random policy
(taking uniformly random actions at each state). For
both on-policy and off-policy learning, 1000 episodes of
samples were collected. All episodes start from state
12 and terminate in state 0. In both on-policy and
off-policy evaluation, LSTD was used. For off-policy
learning, two LAM were first learned from the samples
using Algorithm 1. Then we projected features φi in
the samples and applied LSTD to evaluate the pro-
jected experience. We also compared the two ways of
projecting experience: the stochastic way (Algorithm
2) and the deterministic way (Algorithm3). Notice
that the original features by Boyan can only represent
the value function of policy 1. In order to represent all
the policies exactly, we also used the tabular features
in addition to the original linear interpolation features.

Figure 1 shows the results of evaluating policy 1 us-
ing the original linear features. For this policy, on-
policy learning and the stochastic LAM-LSTD have
a similar convergence rate, for two reasons. First,
the state/action distribution under policy 1 is very
smooth, and the learned LAM do not provide a sig-
nificant advantage in the coverage of state space over
on-policy learning. Second, they both depend on the
sampling of the policy in policy evaluation. However,
the deterministic LAM-LSTD wins on the second as-
pect. The deterministic LAM-LSTD does not depend
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Figure 1. The Boyan MDP: learning policy 1 with the lin-
ear features.

on the sampling of the policy in projecting experience
for policy evaluation, and the convergence is very fast
seen from the figure. The case of tabular features is
similar and thus the figure is not included here.

Figure 2 shows the results of evaluating policy 2 us-
ing the linear interpolation features. For this pol-
icy, the state/action distribution under the policy is
not very smooth. Typically, the “jumping” action is
more frequently taken, and half of the states are more
frequently visited. Hence the accuracy of on-policy
learning is bottlenecked by those infrequently visited
states. The LAM have a much finer accuracy because
it is learned from the data collected from the random
policy which is almost uniformly distributed in both
states and actions. Thus both the stochastic and de-
terministic LAM-LSTD converge faster than on-policy
learning. The two have a similar convergence rate be-
cause the RMSE quickly achieves the bound that is
enforced by the features. Figure 3 shows the results of
using the tabular features. This time the deterministic
LAM-LSTD is much faster than the stochastic LAM-
LSTD, since the tabular features can represent value
functions exactly.

We continue to learning policy 3. Notice that policy
3 is an extremely ill distributed policy. Because the
“walking” action is rarely taken, it requires more sam-
ples for on-policy learning to reflect the dynamics of
policy 3 than off-policy learning. If one learns policy
3 using samples from itself (on-policy evaluation), the
convergence is very slow since it can almost only learn
the value functions of states 12, 10, 8, 6, 4, 2, 0. This
kind of policies does exist in practice. For example,
Koller and Parr (2000) showed that the uneven dis-
tribution of states/actions under a policy can cause
problems for approximate policy iteration.
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Figure 2. The Boyan MDP: learning policy 2 with the lin-
ear features.
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Figure 3. The Boyan MDP: learning policy 2 with tabular
features.

In this case, policy 3 is almost the optimal policy,
which however is poorly evaluated using on-policy
learning. The value function of policy 3 is almost [-18,
-17, -15, -14, -12, -11, -9, -8, -6, -5, -3, -2, 0]. Figure 4
shows that on-policy learning is only able to learn the
value functions of states 12, 10, 8, 6, 4, 2, 0, because the
other states are rarely seen in the episodes. In fact, for
on-policy learning the estimation of these value func-
tions remains at the initial guess, which was 0 for the
experiment because LSTD’s data structures were ini-
tialized to 0. Then the values of the rarely seen states
are rarely updated, leading to a rather large error for
on-policy learning. The problem is inherent with on-
policy learning. In extreme situations like this, it takes
an agent a life time in getting a good estimation of the
rarely visited states using on-policy learning.

Off-policy learning just doesn’t have such a problem.
It is not influenced by whatever frequencies that the
states/actions are visited/taken by target policies. As
long as there are good LAM, evaluation of the tar-
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Figure 4. The Boyan MDP: learning policy 3 with tabular
features.
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Figure 5. The Boyan MDP: learning policy 3 with the lin-
ear features.

get policies is as accurate as the features permit. The
quality of LAM is dependent on whether the collec-
tion policy can collect sufficient samples. Therefore
in practice, designing good collection policies is a key
issue in learning LAM, which is however beyond the
topic of this paper. Figure 4 shows that the two ver-
sions of LAM-LSTD both perform very well. Their
RMSEs are close because the stochastic LAM-LSTD
is almost deterministic. Finally, Figure 5 shows the
results of using the linear features. On-policy learning
does a better job than the tabular case simply because
of the generalization in the features.

4.2. Grid-world

A 11 × 11 grid-world example is shown in Figure 6.
There are four actions available in each state. An ac-
tion moves the agent one grid in the intended direction,
except that when leading to the boundary the agent
remains in the original state. Reaching the left-up and
right-down corners receives a reward 1.0; reaching the
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S

Figure 6. A Grid-world example. The darker is a region,
the more the region is covered by the target policies.

left-down and right-up corners receives a reward −1.0;
and the other rewards are 0. The task is to evaluate
two target policies as shown in the figure. Each run
consists of 100 episodes of data up to 1000 steps. In
each episode, the agent started from the position “S”
in the figure, and behaved according to the target-
policy (for on-policy learning) or the collection policy
(for off-policy learning). For on-policy learning ex-
periments, we used LSTD for evaluating the two tar-
get policies. For off-policy learning experiments, the
agent followed a purely random policy for collection of
samples, and used the deterministic LAM-LSTD for
evaluating the projected experience by LAM. Features
are tabular for both on-policy and off-policy learning.

The on-policy learning result for policy 1 is shown in
Figure 7, and the off-policy learning result is shown in
Figure 8. The RMS errors of the two learning were
compared in Figure 9. The results in all the three fig-
ures were averaged over 30 runs. The results are very
intuitive. For on-policy learning, the agent was explor-
ing the lower part of the world much more often; the
upper part was not well covered. The effect can be
clearly seen from the boundary, x = 6. Because the
policy goes to the left and right equally often, so along
x = 6 the values of the states are 0 (resulting from
the fact that the rewards on the left and right of the
world have the same magnitude but opposite signs).
For the states (x = 6, y ≤ 6), their values were learned
accurately, reflected in that the 0-value boundary is
almost x = 6. However, for the states (x = 6, y > 6),
their values were learned poorly, reflected in that the
0-value boundary is twisted from x = 6. This, in gen-
eral, is an inherent problem with on-policy learning,

−0.8

−0.6

−0.6

−
0.4

−0.4

−0.4

−
0.2

−0.2

−0.2

0

0

0
0.2

0.
2 0.2

0.4

0.
4

0.4

0.
6

0.6

0.
8

x

y

1 2 4 6 8 10 11
1

2

4

6

8

10

11

Figure 7. On-policy learning of target policy 1 on Grid-
world: the contour of the averaged learned policy.
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regardless what algorithms are used. 2

The off-policy learning doesn’t have this problem. In
Figure 8, the 0-value boundary is sharply close to
x = 6. Also, the learned values of the upper states
are much more accurate than those by on-policy learn-
ing. This leads to a much smaller RMSE for off-policy
learning. The problem of on-policy learning becomes
much severe for those policies that rarely visit some
states. For the second policy, the agent goes to the
lower part almost sure, leaving the learning of the up-
per states almost a gap. This causes a large learning
error for the value function, as shown in Figure 9.

4.3. A Difficult Control Problem

We studied the bicycle-riding-balancing task, which
is considered as a difficult problem in literature
(Lagoudakis & Parr, 2003). The state variable is
(ϑ, ϑ̇, ω, ω̇, ω̈, ψ, d, xb, yb, xf , yf ), where θ is the angle
of the handler (abusing notation from the weight vec-
tor), ω is the vertical angle of the bicycle, d is the

2Function approximation may help this problem, but
this depends on if the chosen features can generalize ap-
propriately to those regions not covered.
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distance to goal, ψ is the angle of the bicycle to the
goal, and (xb, yb)/(xf , yf) is the back/front tyre posi-
tion. The actions are the torque applied to the han-
dler, τ ∈ {−2, 0, 2}; and the displacement of the rider,
v ∈ {−0.02, 0, 0.02}. At least one of τ and v is re-
stricted to 0. This leads to 5 actions in total. If ω is
bigger than π/15, the bicycle falls over and the episode
stops. The reward signal is updated according to

rt =

∣

∣

∣

∣

15ωt−1

π

∣

∣

∣

∣

2

−

∣

∣

∣

∣

15ωt

π

∣

∣

∣

∣

2

+
dt−1 − dt

100
,

where dt is the distance from the bicycle to the goal
at the t time step. The discount factor is 0.80. The
state feature is the same as used for a single action in
LSPI, comprising 20 basis functions:

[1, ω, ω̇, ω2, ω̇2, ωω̇, θ, θ̇, θ2, θ̇2,

θθ̇, ωθ, ωθ2, ω2θ, ψ, ψ2, ψθ, ψ̄, ψ̄2, ψ̄θ]T ,

where ψ̄ = π − ψ if ψ > 0, otherwise ψ̄ = −π − ψ.
The problem is difficult partially because there is a
noise added to the displacement action, which follows
a uniformly distribution in [−0.02, 0.02].

We collected a data set of 2500 episodes using a uni-
formly random policy, each comprising 20 steps of sam-
ples. Five linear action models were learned using the
least-squares algorithm. We used LAM to evaluate the
following three policies: (1) policy 1, which takes the
five actions with probabilities 0.4, 0, 0.4, 0.1, 0.1; (2)
policy 2 is coined. With probability 0.1, select the
action that minimizes the predicted direction to goal
(ψ), riding to the goal; with probability 0.9, select the
action that minimizes the predicted vertical angle of
the bicycle (ω), balancing. The predictions are made
according to LAM. For a feature φ, we have five fea-
ture projections, φ̃a = F aφ. For each a, φ̃a(2) gives
the predicted ω and φ̃a(15) gives the predicted ψ after

taking the action; (3) policy 3 is the greedy policy. At
a feature φ in the samples, we select

a∗ = arg max
a

Q(φ, a) = arg max
a

{

φT fa + γ(F aφ)T θ
}

,

(1)
(where θ is the policy weight vector). Then the pro-
jected experience, (φ, a∗, r̃ = φT fa∗

, φ̃ = F a∗

φ) is fed
to LSTD. Policies 1 and 2 can be evaluated using the
deterministic or stochastic LAM-LSTD. We added an
outer iteration loop for learning policy 3 for conver-
gence (in a few iterations). After the value functions
(or parameters θ) of the three policies were learned,
we used them for control, selecting actions online ac-
cording to (1), in which φ now takes real time features.

Figure 10 shows the trajectories of the three con-
trollers. Notice that policy 1 is a poor one, according
to which the bicycle fell over in less than one hundred
of steps most of the time. Surprisingly, action selec-
tion according to the value function of policy 1 (i.e.,
θ1) in the way of equation (1) can balance the bicycle
for at least 72, 000 steps, as shown in the figure. This
is because the value function of policy 1 approximates
the shape of the balancing policy well, though the pol-
icy itself is poor. Figure 11 shows the learned value
function of policy 1: V1(s) = φ(s)T θ1, where s (only
the ω is shown) takes the states in 100 episodes of the
samples. For most trajectories, V1 increases as |ω| re-
duces. Thus action selection through maximizing V1

has the effect of balancing the bicycle. That on the
few trajectories where V1 does not increase as |ω| de-
creases is because the value function also depends on
other factors such as the angle to the goal.

Figure 12 and Figure 13 show the value function of
policy 2 versus the sampled back tyre positions of the
bicycle on the domain. The left and right plots used
the same colors and markers for values of the same
states from samples, so there is a correspondence be-
tween the two plots. For example, the largest values,
on the top of both plots, corresponds to two episodes
of states whose xb is non-negative and yb close to 0.
Figure 12 shows that V2 generally increases as xb in-
creases. Figure 13 shows V2 generally increases as |yb|
decreases. 3 Thus action selection through maximiz-
ing V2 has the effect of pushing the bicycle along the
positive direction in the x-axis. The balancing aspect
of policy 2 is similar to policy 1, and thus not shown.
The shape of V3 is similar to V2, and thus omitted as
well.

Off-policy learning on complex control problems is ex-
clusively important because on-policy learning is of-

3Again there are exceptions for some episodes because
of the dependence on other factors.
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Figure 10. The Bicycle domain: trajectories of acting
through maximizing the value functions of the three poli-
cies. The value functions were learned using LAM-LSTD
off-policy learning.
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Figure 11. The Bicycle domain: the value function of pol-
icy 1 versus ω, shown on 100 episodes of samples. Notice
maximizing the value function has the effect of reducing ω

most of the time.

ten difficult. For instance, in this example behaving
according to policy 1 mostly fell under 100 episodes.
Short episodes of samples under target policies can be
very common since the policies can fail long before the
goal of an agent is reached. In cases where important
rewards are given upon reaching the goal, which are
the most common in reinforcement learning, on-policy
learning of many policies could not collect sufficient
good samples. 4 Moreover, on-policy evaluation re-
quires as many sets of samples as the policies, for which
off-policy learning can use only one set of samples—
off-policy learning is just more data efficient.

4This does not create a problem for this example since
important rewards are given not upon reaching the goal
but upon driving along the direction to it.

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−3

xb

V
al

ue
 F

un
ct

io
n 

V
2

Figure 12. The Bicycle: the learned value function for pol-
icy 2 versus xb.
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Figure 13. The Bicycle: the learned value function for pol-
icy 2 versus yb. Action selection through maximizing V2

has the effect of pushing to the positive direction in the
x-axis.

5. Discussion and Conclusion

Off-policy learning is an interesting topic, which has
been pursued since the early days of RL. The goal
of off-policy learning is very charming: using a single
stream of data collected from an arbitrary policy to
evaluate any other policy. Researchers have proposed
importance sampling (Precup et al., 2001) and gradi-
ent descent methods (Sutton et al., 2009) to this goal.
These methods are generally model-free.

We proposed a model-based method for efficient off-
policy learning. Given a data set of samples, we first
learn a set of linear action models. The linear action
models are then used to project the experience under
a target policy. Off-policy learning algorithms such
as LSTD and GTD can then be applied to evaluating
the projected experience. We proposed two off-policy
learning algorithms with LAM, based on two ways of
projecting experience. Empirical results of evaluating
various policies show that our algorithms performed
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very well.

Our results suggest that off-policy learning is a promis-
ing way of improving the efficiency of using samples.
As long as collection of data is allowed on a prob-
lem, off-policy learning can replace on-policy learning
in evaluating various policies. For RL problems where
interacting with the environment is time consuming or
money expensive, our method provides a very cheap
solution, a one-collection-for-all solution: one time of
data collection from interaction with the environment
can provide accurate evaluation of as many policies
as a RL researcher is interested in. We noticed that
the linear Gaussian MDP model (Bowling et al., 2008)
is also action-dependent but policy-independent. The
linear MDP model is learned from samples, and then
used to explicitly construct the policy models for ap-
proximate policy iteration using sigma-points meth-
ods. As noted by Bowling et. al. (2008), this method
can get rid of samples after the model is learned and
is computationally faster than LSPI which memorizes
and sweeps the samples at each iteration. This obser-
vation also holds for an extension of our method to
approximate policy iteration (see (Yao, 2010)). The
major difference of our method is that we do not con-
struct the policy models explicitly, but use the LAM
to project samples for different policies, which is more
efficient in both computation and memory.

Though the model-based property is the uniqueness
of our approach to off-policy learning, we didn’t go
into comparing with the model-free approach. The
model-based approach is generally known to be more
data efficient, but more complex in per-time-step
complexity (Moore & Atkeson, 1993; Kaebling et al.,
1996; Sutton & Barto, 1998; Sutton et al., 2008). For
example, LSTD produces more accurate predictions
than TD, but its per-time-step computational com-
plexity is higher than TD (Bradtke & Barto, 1996;
Boyan, 2002; Xu et al., 2002). These conclusions still
hold for the comparisons between our model-based al-
gorithms and model-free algorithms of off-policy learn-
ing. Our solution is more data efficient, but is O(n2)
per time step in computation, for which gradient TD
is O(n). Furthermore, our model-based approach to
off-policy learning does not exclude the use of model-
free off-policy learning algorithms. For example, GTD
algorithms can be used to evaluate the projected expe-
rience by LAM, giving several LAM-GTD algorithms.

Acknowledgement

I gratefully give thanks to Csaba Szepesvári, Rich Sut-
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