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SOME METHODS OF SPEEDING UP THE CONVERGENCE 
OF ITERATION METHODS* 

B. T. POLYAK 

(Moscow~ 

(Received 26 November 

For the solution of the functional equation 

P (5c) = 0 

(where P is 8n operator. usually linear, from 
Bsnach space) iteration methods are generally ,, 

1962) 

0) 

B into B, and B is a 
used. These consist of the 

construction of a series x”. . . . , x”, . . . , which converges to the solu- 
tion (see. for example [II ). Continuous analogues of these methods are 
also known, in which a trajectory x(t), 0 <t < 00 is constructed, which 
satisfies the ordinary differential equation in B and is such that x(t) 
approaches the solution of (1) as t + a, (see [21). We shall call the 
method a k-step method if for the construction of each successive itera- 
tion xn+’ we use k previous iterations xn, . . . , xn-k+l. The s8me term 
will also be used for continuous methods if r(t) satisfies 8 differential 
equation of the k-th order or k-th degree. Iteration methods which are 
more widgly used are one-step (e.g. methods of successive approximations). 
They are generally simple from the calculation point of view but often 
converge very slowly. This is confirmed both by the evaluation of the 
speed of convergence end by c8lculation in practice (for more details 
see below). Therefore the question of the rate of convergence is most 
important. Some multistep methods, which we shall consider further, which 
are only slightly more complicated than the corresponding one-step 
methods, make it possible to speed up the convergence substantially. Note 
that 811 the methods mentioned below are applicable alao to the problem 
of minimizing the differentiable functional f(x) in Hilbert space, so 
long 8s this problem reduces to the solution of the equation grad f(r) =O. 

l Zh. Vych. Mat., 4, No. 5, 791-603, 1964. 



2 B. T. PO lyak 

1. 'Ihe convergence of multistep methods 

We shall begin with some supplementary statements, related to the 

spectral theory of operators in Banach space B. We shall denote by (T(T) 

the spectrum of the linear operator T from B into B (all linear oper- 

ators 8re sssumed to be bounded). 

Lemma i. Let ?‘I and T2 be c~utative operators. Then if A f u(T1 f 

Tzj, there exist hl E a(Tz) and h2 E o(T2) such that h = hl + h2. If 

A CZ ~(TIT~), there exist hl E a(Tl> and 712 E ~(7’2) such that A = Alh2. 

Proof. Let us consider a commutative normalized ring, generated by 

the operators TI, T2 and I, their resolvents (7’1 - ~$1”. CT2 - 191)‘~ 

for all !,$e u (T,), ~8 I$ u (Ta) and the resolvents of their sum 

VI f T, - trrt -L for all p @ u (T, •!- T,). Here and further on 1 is 

the unit operator, In such a ring the spectrum of 7’ 8s an operator co- 

incides with the spectrum of 7’ 8s 8x1 element of the ring for 7” equal to 

2’1 or T2 or T1 + T2. Applying to these operators the results E33 (viz. 

Theorem 4, p.32. and property (a) p. 30) we obtain the first statement of 

the lemma. Similarly if we include in the ring the resolve&s (TlT2 - 
LO”‘, IJ e o(TlT2) and use property (b) p. 30 (see [31) the second state- 

ment of the lermaa is obtained. 

Lemma 2. Let T1, . . ., Tk be mutually commutative operators, and 

&A,, ‘.‘t hk) po&ncmii&s in hl, . . . , hk. Then if h E o(P(T1, . . . , Tk)), 
ther8 exist hl E o(Ti), . . . , hk E d-k) such that h = &hl, . . . , Ak). 

This lemma follows directly from Lemma 1. 

Let us consider the space Bk = B x B x . . . x B with elements X = 
(xl, . . ., xk). XI = B, . . ., + E B; flk itself becomes a Bansch space 

if we introduce the norm 

Let T be 8 linerrr operator from Bk into Bk, given by the operational 

m8trI.x (U’ij)), i, j = 1, . .., k, where Tij are linear operators from B 

into B. In other words 

Let ~8 8ssum% that aI.1 Tij are xiutu8lly c~utative. We shall denote ITi 
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the “determinant” of T - the linear operator from B into B, formed from 
Tij by the same rule as in the determinant of a numerical matrix. 

Lemma 3. If A E ~(7’). then 0 E o(lT - hll). 

Proof. If 0 @ u (1 T - hI I), then 1 T - hI 1-l exists. Then the 
operational matrix S = ((Sij)), i, j = 1, . .., k, where Sij = IT - MI-’ 
Aij, and Aij is the cofactor of the element Tij - SijA.7 (i.e. the linear 
operator from B into B, obtained from the elements T - hT by the same 
rule as the cofactor for a numerical matrix), is the inverse of the oper- 
ator T - N. This is verified in the same way as for the case of numeri- 
cal matrices. But this is impossible since, according to the assumption, 
A E a(T), i. e. (T - AI) -l does not exist. 

Lemma 4. Let T be the same as above, h E a(?“). Then we can find 
hij E a(Tij), i, j = 1, . . . , k, such that h is an eigenvalue of the 
numerical matrix A = ((Aij)), i, j = 1, . . . , k. 

Pro0 . 
(T - ?J f 

Since A E a(7), according to Lemma 3, 0 E u( IT - ?d/. But 
is a polynomial in the operators Tij and so, applying Lemma 2 

and using the determinant ITI, 
o(‘l”ij) 0 i, j = 1, . . . , 

we arrive at the conclusion that hij E 
k, can be found such that II\ - hT/ = 0, where 

A = ((hij)), i, j = 1, . . . . k, and IA - ~1 is the determinant of this 
numerical matrix. This proves the lemma. 

In the case where all Tij are functions of one operator Lemma 4 can 
be made more precise. 

Lemma 5. Let A be a linear operator from B into B, Tij = f ii(A) and 
fij(h) analytic functions in some neighbourhood of the spectrum of A, 
T = ((Tij)), i, j = 1, . . . . k and P E ~(7’). Then there exists h E o(A) 
such that v is an eigenvalue of the numerical matrix ((fij(h)). i, j = 
1, . . . . k. . 

The proof is exactly the same as for Lemma 4 but instead of Leaan 2 
the theorem of spectral transformation must be used C [41, p.607). 

Using Lemmas 4 and 5 we can evaluate 11 T”II and I)e’T/I, which we shall 
need later on. 

Lemma 6. Let 

T = ((Tij)). i, j=i,. . . , k, and sup max I PI I < q, { iij EO (Tij) } 1CKk 

where ~1. . . . . ok are eigenvalues of the matrix A = ((Aij)). i,j=l,...,k. 
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Then /I T*II <C (e) (Q f e)n, e > 0 is arbitrary. If T is the same as in 
Lemma 5 and 

where ~1, . . . . ok are eigenvalues of the matrix ((fii(h)), i, j = 1, 
,.., k then the ssme evaluation holds. 

Proof. From Lemma 4 (or 5) and the given assumptions it follows that 
/~l\<q for all ~1 ESa(ZY. Rut 

lim II Plil’” = &z;pT) I P I 
*-Lo3 

([41, p. 6071, i.e. 

lim 11 T” j(lln < q, 
*-so 

which proves the lemma. 

Lernma 7. Let 

T = KW, i, j=i , . . . , JC, md sup max Re pa < r. 
{ X<jEO(Td} lC&k 

Then /I etT 11 < C (e) el(p+L). This evaluation is true if T is the same as 
in Lemma 5 and 

sup max Re z, < r. 
&S(A) l$sGk 

Here ps and -rS are the same as in Lemma 6; E>O is arbitrary. 

Proof. From Lemma 4 (or 5) and the given assumptions it follows that 
Re p\( r for all CI E u(n. But 

([41, p.6231, which proves the lemma. 

The values obtained permit us to investigate the behaviour of the 
iteration sequence in Bk 

X t-b+1 = TX” 

and the solution of the differential equation in Rk 

dX = TS. 
lfr 

(2) 

(3) 
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Lemma 5. Let the conditions of Lemma 6 be satisfied. Then for any X" 
for the series (2) 

Actually, II X” II = II T” X0 II f II T” 11 II X0 11. 

Lemma 9. Let the conditions of Lemma 7 be satisfied. Then with any 
X(O) for the solution of (3) we have the evaluation 

II X 0) II < C (4 II X (0) Ii f+(r+c). 

Actually, II X (t) II = II etTX 69 II f IlefT II II X (0) II- 

These results may be used to study the convergence of the iteration 
series 

.fl+1 = T,xn .+ . . . + Tkxn-k+l (4) 

or for the solution of the equation 

d”x T dk-+t 
-= 1 

dtk-l 
+*** + &i-lx dZ+T@ 

dt” 

in the original space B. 

Theorem 1. Let T1, 

from l?’ into R, and 
. . . . Tk be mUtUallY COIumUtfitiVe lin@~ OPeratOrS 

where ~1, . . ., pk are 
Then fo? any x0, . . ., 

(5) 

{-$a:T~jj l<s<k 
ma= IfhI < ch 

the roots of the SqUation pk = Alpk-r + . . . + ?ik. 
xk-l for the series (4) 

//r-1 \ ‘/a 

If T, = J L(1A), .4 is a linear operator from B into B, fi(A) are functions 
which are analytic in some neighbourhood of the spectrum of A and 

sup max/r,I<q, 
LEO(A) l<s<k 

where ~1, . . . . Tk are the rOOtS of the equation ~~ = fl(h)~~-’ + ~. ~ + 
fk(h), the same evaluation holds for II x” (1. 
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Proof. Consider the series Xk E Bk, where X” = (z”, . . ., P+‘+l), 

and xi E B are terms of series (4). 

As can be verified without difficulty. the relation XnrL = TX”, is 
true, where the linear operator T from Bk into Bk is given by the oper- 
ational matrix 

‘0 1 . ..o 
T = o’ ‘o’ ’ * ’ ; 

. . . 

T, Tk_l . . . T, 

For this matrix the condition of Lemma 6 is satisfied so long as 

“0 1 . . . 0 

* = 0’ ‘0’ * * * ; . . . 
& &._, . . . All 

Its eigenvalues are the roots of the equation @=h#-l+ l l . +hk, and 
therefore the fulfilment of the conditions of the lemma follows from the 
assumption of the first part of the theorem. The situation is also simi- 
lar for the second part of the theorem. Now using Lemma 8 we obtain 

II X” /I < C (4 11 X0 II (q + e)“, but II X”& = (z 11 znti ip)%> (1 e 11, 

which proves the theorem. 

T)uoren 2. Let T1, . . ., Tk be mutually commutative linear operators 
from B into B and 

SUP max Re p, < t. 
{ ){ ENTi )} lC&k 

Then for any 5 (0), . . ., dk-1 z (0)/S-1 equation (5) has a solution and 

i=O ,....k,-1. 

This evaluation holds if 

Ti --_ fi (A) and sup max Re T, G( r. 
&a( A) 1SrQk 
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Here ps, ~~~ fi, A and E are the seme as in Theorem 1. 

Proof. Let us introduce X(t) E bk, X’(t) = (x(t), . .., dkml x(t)/ 
dtk-‘) 
dx( &it 

where x(t) satisfies (5). Then, as we can easily verify, 
= TX(t) where T is the same operational matrix as in Theorem 1. 

Further proof is carried out in the same way as in Theorem 1 but with 
reference to Lemmas ‘7 and 9. 

Theorems 1 and 2 permit us to prove the convergence of the linear 
multistep methods for the solution of the linear equation 

Ax = b. (6) 

Theorem 3. Let T,, . . . , Tk, A be mutually commutative operators from 
k-l 

B into B and ag. . . . , ak numbers, such that 2 ai = 1. Let 
i=O 

SUP max lfhI<4<1. 
GO(A). ( )siE O(Ti)} If&h 

where pl, . . . . pk are the roots of the equation 

k-l 

Then the solution x8 of equation (6) exists and is unique, and for any 
X0, . ..) zkW1 the series 

k-l k-l 

aixn-i + x Tit1 (AZ’+’ - b) 
i=o 

converges to x’ at the rate of the geometric progression 

II x” - xy<c (E) ( ;zo n xi - .*,,,)‘i (q + ey. 

This evaluation is true if 

Ti = fi (A) and SUP max 1 t, j < q < 1, 
Go(A) l<s<k 

where ~1, . . . . Tk are the roots of the equation 

Tk = iz (ai + fi+l th) h) +a 

Proof. Since p = 1 is a root of the equation 
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k-l 
pk zz 2 ai@, 

i=n 

the assumption that 0 E ~$4) contradicts the condition loS/ < I for all 

1 fs<k, h~o(A), and hi E d (Ti). Therefore an operator Am1 
exists and a solution of (6) exists and is unique, n” = A-%. For y” = 
X” - X’ the recurrence relation 

k-1 

“+l Y = z (ai + Ti+lA) Y”--~. 
i=o 

holds. For this sequence the conditions of Theorem 1 are satisfied and 

so I/ yn[ <C (e) 11 y” 11 (q -I- e)“, which proves the theorem. 

Note. The statement, similar to the second part of the theorem, for 
the case of self-conjugate operators in Hilbert space is proved in [51. 

~eore~ 4. Let T1, . . . , T,, A be mutually co~utative operators from 
B into B end 

sup max Re p8 < r < 0, 
).~a(A)v { 1.i E~‘l’i ‘} ICtik 

where pl, . . . . ok are the roots of the equation pk = h,pk-1 + ... 

+ hk+ p f A&. Then the solution x* of equation (6) exists and is 

unique, and for any r (O), . . ., dk-*z (0)/dtk-1 the solution of the differ- 
ential equation 

dkz -= 
dlk 

T,~+...+T,-,~+Tk(Ax--b) 
exists, is unique and converges to x*, where 

This ssme evaluation holds if 

Ti = fi (A) and s&p) z:k Re G < f < 0, 
f \ 

where ~1, . . . . tk are the roots of the equation rk = fl (2.) t”-’ -!- * ** 

+ fk-1 (A) ‘T + fk (A) A. 
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Proof. The assumption that 0 E u(A) contradicts the conditions of the 
theorem, so long as, in this case, p = 0 (or T = 0) is a root of the cor- 
responding equation. Therefore a unique solution X* =A-lb exists. Using 
the notation y(t) =x(t) -9, we obtain for y(t) the differential equation 

The application of Theorem 2 to this equation completes the proof. 

Let us now turn to the investigation of the nonlinear case. The 
possibility of extending the results obtained to this case follows from 
the lemmas below. 

Lemma 10. Suppose that the linear operator T satisfies the condition 

I/ T” jj < C (e) (q -I- E)~, q < 1, and I/ Y (X) II= o (11 X II). Then the series 

X n+1 = TX” -+ Y (X”) 

approaches zero with sufficiently small X0, where 11 xl] f C’ (e)IIXO(j x 

(q + 9” - 

Lemma 11. Let jIe’TJI < C (e) ef(r+r), r < 0, and IIY (X)/l = 0 (IIXII), 
where Y(X) satisfies a Lipschitz condition in the neigh’bourhood of zero. 
Then the solution of the equation 

dX 
--TX+ 

dt y (X) 

exists for sufficiently small X(O) and II X (t) II < C’ (4 II X (0) II e’(r+r). 

The proof of these lemmas is carried out in exactly the same way as 
one of the proofs of the known theorems of stability for the finite- 
dimensional case (see, for instance, [Sl, Chap. 4). 

.Note. In Lemma 11 a Lipschitz condition for Y(X) is required only in 
order to stipulate the existence of the solution of the differential 
equation. In the finite-dimensional case a sufficient requirement is the 
continuity of Y(x). 

We now quote theorems on the convergence of multistep methods for the 
nonlinear case. These theorems are proved in exactly the same way as the 
corresponding Theorems 1-4 for the linear case taking Lemmas 10 and 11 
into account. 
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Theorem 5. Let the conditions of Theorem 

and lfvr (r) n = o (I/ x/l), i = 1, . . . , k. Then 

x0, . . . . xkV1 the series 

1 be satisfied, while q < 1 

for any sufficiently small 

x”+l = 3 (Tj+lxn+* + ?Ji+r (x*+i)) 
i=o 

converges to zero, and 

I/ x* I\< C (e) (5 l/x* I/‘)” (q f e)*. 
is0 

Theorem 6. Let the conditions of Theorem 2 be satisfied where r < 0, 

1 Y (4 II = 0 (II 2 II) and y(x) satisfies a Lipschitz condition in the neigh- 

bourhood of zero. Then the equation 

dks _ T d"'r 
--I- 3 - 1 &k-l *** i- Tk-17 d= f TkX + 9 (X) 

has a solution for sufficiently small x (0), . . ., dk-1 x (O)ldW, where 

Theorem 7. Let x* be a solution of the equation P(x) = 0, where i’ is 
a nonlinear operator from R into 5, which has a derivative p’(n*) at the 
point x*. Let Tl, . .., Tk be linear operators which are commutative among 
themselves and with p’(x’I, and 

sup max /PSI fq<k 
&u~P’fr*)f lSs<k 

{ A{ EoiTit) 

where ~1, . .., pk are the roots of the equation 

k-l 

Pk = 2 (ai + k+th) Pi9 

Then for any x0, . . . , zkB1. sufficientlv 

k-l 

x Ct(i= I. 
i=O 

close to x*, the series 

k-z 

X”+l = z. Qi2”-i _t j: Ti+lP(Xnei) 

converges to x*, where 

II x” - 

(7) 
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This is true if 

Tr = fi (P’ (x0)) and sup max Ir81fq<i, 
aEe(P’w)) 1063 

where ~1, . . . . Tk are the roots of the equation 

k-l 

Tk = 2 (cti + fi+l (h) A) ri* 
i=o 

Proof. Since P(x) is differentiable at X* and P(x*) = 0, then J’(x) = 
P’(nf) lx - XL) + y(x - x*) where jj y (5 - 5’) II = 0 ([jz - x*/) . There- 
for (7) can be written as 

k-l k-l 
-p+1 = x UiXnwi + x Ti+,P’ (5.) (X”-’ - 5.) + ‘2 Ti+,y (Xn”-‘- 2.). 

i=a i=O i==0 

k-1 

Introducing zn = xn - X* and using the fact that 2 cq = 1, we obtain 
i==a 

k-l k-l 

z”+l = 2 (ai + Ti+,P’ (x’)) zn-{ + x Tr+ry (z”-4). 
i=0 i4l 

Now we only have to use Theorem 5 to complete the proof. 

Theorem 8. Let P(x’) = 0 and the operator P(x) have a bounded deriva- 
tive P’(x) in some neighbourhood of x*. Let Tr, . . . , Tk be linear oper- 
ators, commutative among themselves and with P’(x*) and 

SUP max Re p, < t < 0, 
ha(P’(x*)) l<s<k 
(Ai Emi )} 

where ~1, . . . . ok are the roots of the equation pk = Qk-r + -. - 

+ hk-# + hkx. Then for any sufficiently small x(O) - x*, dx(O)/dt, 
. . .) dkelx(0)/dtk-' the differential equation 

dkz 
x= 

T d”-‘x 
ldtk-’ +.**+Tk-1% + ‘I’rp@) 

has a solution, where 

Ii 5 (0 - x* 11 < C (e) Ref(r+r), < C (e) Ret(r+L), i=i,...,k--i, 

This is true if 
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Ti = fi (P’ (2’)) and sup max 
AEaU”(x*)) KS3 

ReG\<r<o, 

where ~1, . . . . vk are the roots of the equation vk = fl (h) Tk-1 + . . . 

+ fk-1 (A) 7 + fk (A) A. 

The proof is carried out as for the above with reference to Theorem 7. 
The boundedness of the derivative P’(x) is necessary in order to satisfy 
the Lipschitz condition for y(x). 

Note that for nonlinear problems 
on convergence. Nonlocal results of 

2. Examples, the 

we have obtained only local theorems 
this type would be very interesting. 

numerical aspect 

Let us now consider in more detail some two-step methods and show 
that they actually speed up of the convergence in comparison with the 
corresponding one-step methods. We shall study the method 

gn+1 = xn - UP (5”) + p (xn - x-1) c-9 
and its continuous analogue 

dtc 
dts=% dt 

fi + up (5). 

Note that methods of the type (9) are widely used in linear algebra for 
speeding up the convergence of iterative methods of solving linear ecua- 
tions. Methods such as Lysternik’s, conjugate gradients, Abramov’ s, 
Faddeyev’s *general three-term iteration process”, etc. all have the 
same form as method (91, but with variables a and 13 (see [71, Chap.9). 
Method (91 with constant a and p for problems of linear algebra was put 
forward by Frankel ([81, see also [91, pp. 255-261). 

We now mention a theorem on the convergence of methods (9) and (10). 
Here we limit ourselves to the case where P(z) is a potential operator 
(i.e. the gradient of some functional) in Hilbert space. Then the one- 
step methods 

zn+1 = 2" -UP (z”), 

dx/dt = UP(X) 

are simply the gradient methods of minimizing 

(11) 

(12) 

this functional (see [lOI ). 
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T,beorem 9. Let the functional f(x), given in some region s 
space H, be differentiable in some neighbourhood of the point 
i. e. 

of Hilbert 
XL E s, 

fk + y) = f(x) + P(r), y) + o ( ll Y II )t 

where P(x) is the gradient of this functional at the point x. 
P(x’) = 0. Let us assume that f(r) is twice differentiable at 

f (5’ 4 y) = f(x) + (P W), y) + f (A Y, y) + o ( II Y 11% 

Let 
x*, i.e. 

where A is a self-conjugate operator from H into H. Suppose that for all 

YEH 

Then: 

My, y) f (Ay, I/) < M(y,y), m>O. (13) 

(1) X8 is a local minimum point of f(n); 

(2) for 0 < a < 2/M, for all x0 sufficiently near to x*, the series 

(11) converges to xc, while [Ix” - z*\[ < c, (E) 113~~ - s*jI (ql + e)“, 

Ofq,<l, q,=max{/I--anI, II-aMI}. The quantity q1 Isa 

minimum and is equal to 

M-m 
iI =MS_m for a = *; 

(3) for o \<p < 1, 0 < a < 2 (1 -!- p)/M for any x0, x1, sufficiently 

near to x*, the sequence (9) converges to x*, where 11 zn - z* II< C, (e) 

~~~~~~~d~~~2,‘,,,~~‘i~ (q2 + e)“, 0 f q2 < 1. The quantity q2 is a 

In addition let f(x) be twice differentiable in the neighbourhood of 
x* and the second derivative be bounded there. Then: 

(4) for any x(O), sufficiently near to z*, and any a < 0 equation 

(12) has a solution, where 11 z (t) - s*il\( Cs (e)u z (0) - z*llef(rl+r), 

rl = am ( 0; 
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(5) for any sufficiently small r(O) - x*, dx(O~/dt and any al < 0, 

a2 < 0, equation (10) has a solution, where [I z (t) - CELL/ < C, (e)Re Q**+Q, 

B. 7’. l’o lyak 

r, = a,+ ‘t/R 
2 ’ 

g = max (0, uf + 4a,m}. 

Proof. The first statement of the theorem is obvious. The second and 
fourth statements may be obtained without difficulty from the results 
given above, but we shall not dwell on this because these statements 
were known previously [lo]. We turn now to the proof of the third state- 
ment. Obviously method (9) is a particular case of method (7) with k = 2, 

*0 =l+P,al=- p, (a, i- a1) = 1, Z’, = - a1, T, = 0. To apply 

Theorem 7 it is sufficient to verify that 

where pl, p2 are the roots of the equation pa = (aa - ak) f al, i.e. 

the equation pw - (1 + p - ah) p - p = 0 (so long as A = P' (5.)). 

From the assumption (13) it follows that if h E.o(A), then m <A \<M. 
Tlrerefore it is sufficient to prove that 

But for the proof of convergence of method (91 for a finite-dimensional 
quadratic functional we must consider the ssme equation (see [91, PP. 
255-281). It was shown there that with the assumption made about a and 
p in fact 

,sua,,msx {M IoyI1 < qa < 1. 

There the quantity q2 was given depending on a and p and, in particular, 

the minimum value ;ig. Thus Theorem 7 is applicable which proves the third 
statement of the theorem. 

We shall now prove the last statement. Method (10) is a particular 
case of method (8) with k = 2, T1 = alf and T2 = a2I. All the conditions 
of Theorem 8 are satisfied and it is only necessary to prove that 

sup 
m<A<M 

max {Re pl, Re PJ < r2 < 0, 

where p1 and pg are the roots of the equation p2 = alp + agh. But 



The convergence of iteration nrthods 15 

a1 f 62 
Pl.2 = 

al + 4Jzh alfV3 

2 ’ Re fh2 = 2 . 

g 04 = max (0, a: + 4CC2h), 

sup max {Re pi, Re p2} = al+ V/g = r2<c 
TTl<?.<;M 

2 

Thus Theorem 8 is applicable and this completes the proof. 

Note. If f(x) is a quadratic functional the given methods converge 
with any initial values (instead of Theorems 7 and 8 we must use 
Theorems 3 and 4). In the case of a non-quadratic functional we can ob- 
tain nonlocal theorems for one-step methods [lo]; for two-step methods 
we have succeeded in obtaining only the most particular results of a 
nonlocal type. 

We shall now compare methods (9) and (11) from the point of view of 
calculation. Note first of all that near the minimum point the func- 
tionals, as a rule, satisfy the conditions of Theorem 9, so that the 
equations given by this theorem are generally applicable. As was Bhown 
above, the gradient method (11) with optimum choice of a converges as a 

geometric progression with common ratio ;I = (M - m)/(hf + m), and the 
two-step method (9) with optimum choice of parameters as a geometric 

progression with common ratio i& = (V?W - VK)/(r/% + I/m). The 

case where p = M/m is large is of considerable interest, 80 long as for 
the majority of practical functions, near the minimum, f(x) varies 
weakly in some direction (i.e. m is small) and strongly in another (M 
is large). Note that in the terminology of Gelfand and Tsetlin [ill such 
functions are said to be well organized, the first directions essential 
and the second nonessential. For a quadratic functional, corresponding 
to this there IS the case of au ill conditioned matrix (,c here is the 

same as P, the number of the conditionality, see [71), For large p we 

have g,el - 2/p, i.e. tr is near unity and the rate of convergence 
of the gradient method is low. For the two-step method with large p we 

have Zj2 = 1-2ll5 Therefore, in order to decrease the deviation from 

the minimum point ek times, in the gradient method we require a number 

of iterations of the order nl = kiln ijI z kpf2 but in method (9) of 

the order n2 = k/in ijz ,N kdp/2. For large p we shall have nl > n2, 

so that the speeding up in this case is very effective. 

This is confirmed by qualitative considerations. Note that method 
(10) can be described by the same equation as the motion of a body in 
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a potential field (so that method (9) - a discrete analogue of (10) - 
can be called “the method of a small heavy sphere”). The motion proceeds 
not in the direction of the force (i.e. antigradient) because of the 
presence of inertia. The term p(xn - xn-r), giving inertia to the motion, 
will lead to motion along the “essential” direction, i.e. along “the 
bottom of the trough’ [ill. 

From another point of view method (9) requires only slightly larger 
calculations at one iteration than (11). 

A few words on the choice of the parameters a and @. As long as the 
values of a and ## are generally ~known the parameters have to be chosen 
empirically. It is convenient to do this as follows. Initially we do the 
computation with p = 0, choosing the best value of a_ When the rate of 
convergence slows down we add the term with p. Here the slower the rate 
of convergence the nearer to unity we must take p. Generally p = 0.8 - 
0.99. Simultaneously we can increase a (since the optimum 0; in (9) is 
approximately twice as large as in (11) for large p). We must bear in 
mind that f(P) in method (9) does not necessarily vary monotonically 
from iteration to iteration and sections of increase may occur. Only if 
the increase in f(zP> is stable must we decrease a and @. 

We note also one merit of method (9). It will “bring in” small minima 
on account of the inertia. Actually, if P(x”) is small (xn is near a 
local minimum), but X” - xn-l is large, then zn+’ - xn will also be large 
and xnti, possibly, turn out to be inside the region of attraction of 
this local minims. For this purpose (and not for speeding up convergence) 
a method, similar to (91, was used to minimize some concrete functions 
in c121. 

Method (9) was tested in the solution of a number of problems, The 
test showed that in the majority of cases it actually gives a marked 
speeding up (up to tenfold) in comparison with the gradient method. At 
the ssme time method (9) frequently gives too slow a convergence and we 
have to use more powerful (but of course more laborious) methods, for 
example Newton’ s method. 

We might similarly using the theorems of the first section also in- 
vestigate other k-step methods with k > 2, but they would scarcely turn 
out to be suitable for practical calculations, so long as the speeding 
up which they give is low compared with the two-step method, and the 
difficulties of choice of parameters in these methods sharply increase. 
Much more important (but also more difficult) for investigating classes 
of methods are nonlinear end nonstationary multistep methods (i.e. 
methods of the form z.Yr = Q&P, . . ., =n-k+ I 

1. where 0, does 
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not necessarily depend linearly on x i and Rx i) 1. In this area only 

various disconnected results are knom. 

Translated by H.F. Clerves 
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