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—NOTES—

THE METHOD OF STEEPEST DESCENT FOR NON-LINEAR
MINIMIZATION PROBLEMS*

By HASKELL B. CURRY (Frankford Arsenal)

1. Introduction. The problem considered here is that of minimizing a function of #
real variables, G(xy, - - - , x,.). The object is to find a practical method for evaluating,
approximately at least, a stationary point for G.

This problem includes as a special case that of solving a set of simultaneous equa-
tions

filxy, « -+, %) =0 (3=1,2,---,m), (1)

because the function

gl )
G(Ilr"'-":n)=2f£ (H}
k=1
has a minimum at a solution of (1). It also includes that of determining the parame-

ters xy, - - -, ¥, of a function f(u; x, - - -, x,) so as to get the best approximation,

in a least square sense, to a function F(u) for certain values of u; the G in this case
is of the form given by

P
Glay, -~y xa) = 3 [Flas) — flus; 2, - -+, x) * )

. k=]

Certain engineering applications of the latter sort of problem arose in the work
of the Engineering Research Section, Fire Control Design Division, at Frankf orfi
Arsenal. In these applications, the function f(u; x,, - - - , x,) was sufficiently compll-l
cated so that the standard method for dealing with non linear least square problems
failed to converge. Two techniques for dealing with this situation were developed by
the section under the direction of J. G. Tappert. One of these was an original sugges-
tion of my associate K. Levenberg.? The second method is the subject of this note.

This method is not new. Levenberg found it set forth in a paper by Cauchy dated
1847.2 That it has become a standard procedure in analysis is clear from a recent paper
by Courant.* Nevertheless it does not appear to be well known to authorities on nu-

* Received Jan. 22, 1944,

! See, for example, W. E. Deming, Some notes on least squares, U, S. Dept. of Agriculture Gr:fduate
School, 1938, p. 31 ., or E. T. Whittaker and G. Robinson, The calculus of observations, Blackie and

Son, London, 1940, p. 214. Deming's treatment is also given in his book, Statistical adjusiment of data,
John Wiley & Sons, New York, 1943, p. 52 f.

* K. Levenberg, A method for the solution of certain non-linear problems in least squares, Quarterly g
Applied Mathematics, 2, 164 (1944).

*A. L. Cauchy, Méthode générale pour la résolution des systémes d'équations simultanées, Comptes
rendus, Ac. Sci. Paris, 25, 536-538 (1847)

* R. Courant, Variational methods for the solution of problems of equilibrium and vibrations, Bull.
Amer. Math. Soc. 49, 1-23 (1943). See

*.ha 49, 1 especially pp. 17-20. Courant calls the method the “method of
gradients” and ascribes its origin to a paper published by Hadamard in 1907.
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merical computation. It was used for the case of linear equations by G. Temple
but he gave no reference to Cauchy's work nor indeed to any previous use of the
method. Accordingly there is room for an exposition of the method with emphasis on
its practical aspects.

This note also contains an outline of a convergence proof. Cauchy stated that the
process converged but gave no proof, at least in the paper cited. Temple's conver-
gence proof applied only to the linear case. Courant (l.c.) gives references to papers
dealing with the method; but some of these were not accessible to me under wartime
conditions. The convergence proof, as outlined here, is an elementary one and gives
a weak result.

The argument is, incidentally, capable of generalization to certain cases where
there are infinitely many parameters, i.e., where G is a function ofavectorxbelonging
to a suitable abstract space. The essential point is that there be a vector function
H(x), the gradient, such that for vectors x, y and scalar ¢

d

(

where the dot indicates a scalar product.® Such generalizations will not be considered
explicitly.

2. Explanation of the method. The letters x, z will be used to stand for Ehe n-tuples
(vectors) (xy, - - -, x,) and (zy, - - -, 2s) respectively. It will be conver.uent. also 'tO
think of the vector x as a point and z as a set of direction numbers of a direction, Viz.
the direction z, emanating from x. Superscripts will be used systematically to dis-
tinguish different points and their corresponding directions. easdiie

Let us suppose, then, that we start at a point X’ and determine the dlrec.tlon mn
which G decreases most rapidly. This direction is given by 2i= —\ G/9x: or, - \fec-
tor form, z°= —\ grad G, where \ is an arbitrary positive factor of PTOPO"_UO“al'tY'
(In practice we >hlfll1](l cither take A=1 or choose \ so that t'he v:'ector Z1s oIftunil]'ll
length.) Then the function g(f) =G(x'+#2’) hasa negative derivative ati=0. A

therefore be possible to find a ¢>0 such that

4
g(f) < gl0). ®

: p . inue. We should
With such a ¢ we can take x! =x94/2° as a new starting point ::illd COSU':;IEU‘;Vder o
then have a sequence of points x°, x!, X}, - - - such tha.t G(x - ket c(:llv;zrge to a sta-
able restrictions (to be considered later) the sequence will attain 0r ¢

tionary point of G Ll
; .. y 2 indication is avail-
MhEdetermination of ¢ can be accomplished by trial. If no othi;"t‘l?; curve y=g(f)
ble we can take as first trial value the intercept of the tangerllltntake half of it, and
on the f-axis.? If this fails to satisfy (4), it is too large; we can the

few trials it is
S0 on. In this process we can draw a rough graph of g(0)s and after @
e

. : stems, Proc. Roy. Soc.
 G. Temple, The general theory of relaxation methods applied lo linear 5

London (A) 169, 476-500 (1939). For this reference I am indebted_ to H'II:[Oti:,lglg'diﬁerential.can prob-
* Even the case where such a gradient does not exist, there being only aethod that Temple's method

ably be handled by a method which bears the same relation to the present M

Or gyrostatic systems does to his method of steepest descent. . oo by Newton's method to th.e
" This was done by Cauchy (lLc.). It represents the c?lF‘P"F"““““mﬂ )fhere the numerical value is

oo et positive zero of ¢(t). This is a reasonable guessfor a G given by.(2); ¥

; imes too large. .
Zero. In the Jeast square cases (where G20) the guess is often many times


yaoliang
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usually possible to locate a ¢ which is at or near a minimum of _g(t). Experience will
presumably disclose many ways to shorten the process 1n individual cases.
If we take for ¢ precisely the smallest positive root of

ol . : ; ine
the process has the following geometrical interpretation. Starting at x°, we determi
the direction in which the surface

y =G(x) =Gy, - -+, %) (6)

is descending most rapidly. We continue in that direction until we find oursell{vezs1
going along a contour (i.e. a horizontal section of the surface). Then we stop, take :
new direction of steepest descent, and so continue. Since the direction of stkeipes
descent is always normal to the contour it follows that the directions z* and z*7" are
at right angles.® This is important in the convergence proof. ) d

3. Proof of Convergence. Let us suppose now that Glxy, « -, *a) 18 defined a;l
has continuous first partial derivatives at all points within or on the bc.)undaryn o (’;
region S. Let x° be a point within S. Let C be the broken line path starting at X" an
going in the direction of steepest descent at x° until it reaches either the l.Jo.undary
of S or the next approximation x! determined as in §3 with ¢ the least positive rOOti
of (3); in the latter case the broken line goes in the direction of steepest dc;sccn? at:
until it reaches the boundary of S or the next approximation x* determined in the
same way; and so on. Then G is monotone decreasing along C. There are three possi-
bilities: (1) The path C may run into the boundary of S. (2) The path C may termi-
nate at a point where the direction of steepest descent does not exist, 1.e. at a _s'ta.-'
tionary point of G. (3) The process may continue indefinitely. The first POSSlblllt}'
will certainly be excluded if the value of G at x? is less than at any point on the
boundary of S. If the second possibility occurs the case is trivial. I shall mak.e the
limitation just stated in regard to G(x°) and shall suppose that the process continues
indefinitely.

o= D . s it i X
Under these presuppositions let x* be a limit point of x?, x!, - - - . Thenit1s clea
that

G) <G  (E=0,1,2,---). @D
It will now be shown that x* is a stationary point of G.

Let us suppose the contrary. We write H(x) =grad G, h(x) = lH(x)l , and let z(x)
be a unit vector; thus

H(x) = - h(x)(z-()x). (8)

According to the supposition, k(x*) 0. Hence it will be possible to find a Spherical
neighborhood U of x* such that for x in U,

| H(x) — Hx*) | < eh(x=).

Then it will follow that \h(x)-h(x“)\ <eh(x”), |z—z®| <2e. Hence, from the fact

that z* and 2! are at right angles, one can conclude that if x* is in U, x*+! is certainly
not in U (provided e is not too large).

Next, let K be the conical sector of U for which

P Gl opd
cos f =

|x—x=|
® This & also easily proved analytically.

S 4zl
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Then it may be shown, by reasonably straight-forward methods, that for x in K
G(x) < G(x®), (9)

L_Et Vbe a Slll'lh't,u]ﬂ'-frrilnnd of U such that for x in V the ray in the direction z (as
given b}: (8)) frnm. X mntersects K. Such a V exists if €<, Since x* is a limit point,
U s i 1 T e i e o v it

an 3 X", since x**! is not in U and U is convex. Hence,
by tl_'le munoEr;wmr character of G on C and by (9), G(x**!) <G(y) <G(x®), which con-
tradicts (7). This contradiction came from the assumption that k(x*) #0.

T'he_followin g example shows that we cannot expect a better result without further
restnc?nons on G. Let G(x, ¥) =0 on the unit circle and G(x, ¥) >0 elsewhere. Qutside
the unit circle let the surface have a spiral gully making infinitely many turns about
thc_' CII:CI{'. Then the path € will evidently follow the gully and have all points of the
unit circle as limit points.

) l_" a practical problem however we often know in advance that there is a unique
minimum of G within S; in these cases convergence is assured. If G is given by (2)
find the Jacobian of the f's does not vanish in S, then every stationary point of G
18 a solution of (1); if there is only one such solution the process converges to it.

jl. Concluding Remarks. In regard to the practical aspects of the method the fol-
I‘_’“"“H points are to be noted: (1) It does not require any calculation of second deriva-
tives. This is important for the application mentioned, where these second derivatives
are numerous and complicated. (2) It involves only direct calculations of G and its
first derivatives. (3) The approach to the limit, if any, is along a path C consisting of
Straight line segments, adjacent segments being approximately at right angles.

A comparison with Levenberg's method in regard to these three respects is now in
order. In the first respect the two methods are alike. In the second respect Levenberg's
method is more complicated because each stage requires the solution of a set of “nor-
mal” equations, as in the traditional method of least squares. In the third respect
Levenberg's method is like the present one in that it involves approach along a brokeg
Path C; but the individual picces of C are curved. There is evidence that in practical
p"f’blt‘ms these curves follow the natural valleys of the surface, so that ea.ch.ste'p
brings us f urther toward the goal. As to which of these opposing characteristics is

th o :
€ more important is not yet settled.?

Another point is that the process is not inva

fOFmati(ms' e.g., a change of scale of one or more of the x:. Thus, if the surface ((f) .(for
scent is along the meridian,

:nzdzi hls & ]'f‘i"_“ishhcficu] bowl, the direction of steepest de e
€ minimum is reached in one step. If, however, the scale on the &7a%
thanged so that the surface becomes ellipsoidal, the direction of steepest descent 15
e !O“gﬁ'l‘ directed toward the minimum. The suggestions inherent in this lack of in-
Variance have not vet been fully worked out.

riant under certain elementary trans-

oom" The engineers at Frankford Arsenal prefer the Levenberg me.thod for the proble:rl;;ﬂ;;::ceh:;:
ronted them; but I do not know to what extent they have exploited the present mEtiot. e
enberg method s confined to a G of the form (3) and makes use of that repres?ntatlon, it wt;c S
.s;lrprising if it should prove superior for that case. On the other hand it ;s not d:ﬂiculz :-)e(l:lc,::the i
ond €Xxamples for which the method of steepest descent is superior in the third respect
» @t least for certain determinations of the weighting factors.





