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-NOTES-

THE METHOD OF STEEPEST DESCENT FOR N ON-LINEAR 
MINIMIZATION PROBLEMS* 

BY HA KELL B. CURRY (Fra11kford Arsenal) 

1. Introduction. The problem con idered here i that of minimizing a fu nction ? f 11 

real variables, G(x1, · · · , xn). The object is to find a practical method for evaluating, 
approximately at least, a stationary point for G. 

This problem include a a pecial ca e that of oh ·ing a ct of simultaneou equa-
tions 

/,(x1. · · · , x,.) = 0 i = 1, 2, ' ' ' I nz) , ( 1) 

because the function 

"' 
G(x1, · · · , x,.) = L Ji (2 

1-l 

has a minimum at a olution of (1). It al o include that of de te rmining the parame
ters x1, · , Xn of a function f(u; x1, · , x,,) o a to get the best a ppro,imation, 
in a lea t quare ~en e, to a fu nction F(u for certain values of u; the G in this case 
i of the form given by 

J> 

G(x1. · · · , x,.) = L [F 1t1) - f~ttk ; X1, · • • , x,.) ]~. 3) 

'-1 
Certain engineering application of the latter ort of problem aro~c in the " o rk 

of the Engineering Re earch ction, Fire Control De i n Divi ion, at Frankfor? 
Arsenal. In these application , the function J(u; x1, • • • , x,,) was sufficic n tly compli
cated o that the tandard method for dealing with non linear least square problcms1 

failed to coO\·erge. Two techniques for dealing with this ituation were d eveloped by 
the section under the direction of J. G. Tappert. One of these was an orit;inal sugges
tion of my a ociate K. Leven berg.~ The second method is the subject of this note. 

This method i not new. LeYenberg found it et forth in a paper by Cauchy dated 
1 -17 .3 Tha t it ha become a tandard procedure in analysis is clear from a recent paper 
by Courant.4 :\e\·enheless it doe not appear to be well known to authoritie on nu-

• Received Jan. 22, 194-4 . 
1 

See, for example, \\'. E. Deming, S ome 110~ on kast sqrwres, . . Dept. of Agriculture Gr~duat~ 
hool, 1938, P· 31 ff., or E. T. Whittaker and G. Robinson, The calculfl.s of observations, Blackie an 

Son, ~?don, 1940, p. 214. Deming's treatment is also gi\•en in his book, Statistical adjus tme11t of data. 
John \\ 1ley & ns, Xew York, 1943, p. 52 ff. 

' K. Le\·cnberg, A method for the solution of urtain non·linear problems in least squares, Quarterly of 
Applied :\lathematics, 2, 164 (1944). 

i :\. L. Cauchy, JftJhode gb1trale Pour la risoluJion des system.es ci'tquations sinwlta11us, Comptes 
rendus, Ac. i. Paris, 25, 536--38 (18-17). 

4 
R. Courant, i ·ariati-011aJ metluxls for tlie solut ioii of problems of eqtt ilibrittm anci t·ibrations, Bull. 

Amer. :\lath. Soc. 49, 1- 23 (1943). See especially pp. 17- 20. Courant calls the method the "method of 
gradients" and ascribes its origin to a paper published by Hadamard in 1907. 
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merical computation. It wa" u <:d fur the case of linear equations by G. Temple;~ 
but he gan no ref..:rcnc.c to Cauch) 's work nor indeed to any previous use of the 
method Acrordin~ly then· i" room for an exposition of the method with emphasis on 
its practical a-.pt ct'. 

This note also contains an outlin<. of a convergence proof. Cauchy stated that the 
process COll'\'l'r!-!rd hut gan· no proof, at least in the paper cited. Temple's conver
gence proof applird only to the linear ca e. Courant (I.e.) gives references to papers 
dealing "it h t lw 111l' t lwd; but some of these were not accessible to me under wartime 
conditio1 s. Th· conwrgenCL' proof, as outlined here, is an elementary one and gives 
a wca k rl'SU l t. 

ThL .'\rgumcnt i , incidcnt.1lly, capable of generalization to certain cases where 
there are infinitl'ly many par.1ml'lcr , i.e., where G is a function of a vector x belonging 
to a uitablc abstract -.pace. The essential point is that there be a vector function 
H x , the gradiL•nt, such that for \'cctors x, y and scalar I 

d 
- lv x + ty)] = H(x + ty) · y, 
di 

where the dot indic.tll's a scalar product.' uch generalizations will not be considered 
explicith 

2. E~planation of the method. fhc letters x, z will be used to stand for then-tuples 
(n~ctors. (.\ 1, , .\ ,.

1 
.rnd (.::i. . , z,.) respectively. It will be conve~ient. also .to 

think of the ·vector x .1s a point and z as a set of direction numbers of a direction, v~z. 
the direction z , t•nwn,1ting from x .. uper cripts will be used systematically to dts-
tingui~h diff l'n'n t points and thl ir corresponding directions. . . . 

Let us suppo-.e, thl!n, that \\C start at a point x0 and determine the direc~ion 10 

\\hich G decn·a-.l'S mo-.t rapicllv. Thi direction is given by z,= ->. ac;axi or.' tn ~ec
tor form, z -A g-r.1d G, where A is an arbitrary positive factor of propor.tionalt~. 
(Jn practicl \\c !'.'hould either take A=l or choose X so that the vector z is 0

1
f un.1

1
t
1 I h · d · t'veatt -0 tw1 cngt ) Then the function g(l = G(xo+lz ) has a negative enva 1 - · 

therefore be po:-.siblc to find a t > 0 such that 

g(I < g 0). 
(4) 

\\,. h · · t d continue We should 1t such al we can t·1kc x i = xo+1zo as a new starting potn an · · 
h ' ' G( Ht) <G(xk) Under suit-

t en havL a Sl'qucncc of point - x0 , x1, x2, such that x . · ta-
bl .11 tt n or converge to a s 

a. e restrictions (to be considered later) the sequence Wt a ai 
t1onarv po' t f G . 

J 111 o . h · d' tt'on isava1l-
Th d . . . d b t . 1 If no ot erin tea e c tcnrnnat1on of t c 10 be accompltshe Y na · - g(t) 

bl ' . f h t ent to the curve Y -
e we can take as first tnal value the intercept 0 t e ang k half of it, and 

on the t-a:-..i s ; If thi<; fails to satisfy (4), it is too large; we can thefn ta ef v trials it is 
so 0 I . h f (t) and a ter a e\ n. n this process we can draw a rough grap o g ' 

' lit4 to linear systems, Proc. Roy. Soc. 
G. Tem ple, The general /Mory of rtlaxation methods app H II' 

London (A) 169, 4 76 500 (1939). For this reference I am indebted. to H.I otet ~f ~Jifferential, can prob· 
• E h . th re being on y a o , hod ven t c case \\ h1;rc such a gradient does not exist, e thod that Temples met 

abl) be handled by a method which bears the same relation to the present me 

for gyrostatic systems doe:; to his method of steepe:.t descent. . . b Newton's method to the 
1 Th' h ox1mat1on Y I · 

5 
1:; was done b) Cauchy (I.e.). I t represents t e app~ · , (

2
) where the numerical va ue 15 

mallest positive zero of g(t). This is a reasonable guess.for a G given b~ ' too large. 
zero I h 1 · ft man}' bmes · n t e east square cases (where G~O) the guess is 0 en 

yaoliang
Highlight
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usually possible to locate a t which is at or near a minimum of g(t). Experience will 
presumably di clo e many ways to horten the proce s in individual case 

If we take for t preci ely the smalle t positiYe root of 

g'r t) = 0, C-) 

the proce has the following geometrical interpretation. tarting al x0
, we determ ine 

the direction in which the urface 

Y = G(x) = G(x1, · · · , Xn) (6) 

is descending mo t rapidly. \Ye continue in that direction until we find ourselves 
going along a contour (i.e. a horizontal ection of the surface). Then we stop, take a 
new direction of teepe t de cent, and so continue. ince the direction of steepest 
descent i alwav normal to the contour it follows that the direction z" and zH

1 
are 

at right angles. T hi is important in the convergence proof. 
3. Proof of Convergence. Let u uppo e now that G(x1, • • • , x .. ) is defined and 

has continuous first partial derivative at all points within or on the boundary of a 
region S. Let x0 be a point within . Let C be the broken line path starting at x

0 
and 

going in the direction of teepe t de cent at xo until it reache either the boundary 
of S or the next approximation x1 determined a in '3 with t the least positive root 
of C-); in the latter ca e the broken line goe in the direction of ~teepe t descent at X

1 

until it reaches the boundary of Sor the next approximation x~ determined in th.e 
same way; and so on. Then G i monotone decreasing along C. There are three poss~
bilities : (1) The path C may run into the boundary of S. (2) The path C may termi
nate at a point where the direction of tecpest de cent does not e'i t, i.e. at a .s:a
tionary point of G. (3 The proce_ ma) continue indefinitely. The first po sibihty 
will certainly be excluded if the value of G at x' i le than at any point on the 
boundary of S. If the second possibility occurs the ca e i~ trivial. I hall make the 
limitation ju t stated in regard to G xu and hall suppose that the pro ct s~ continues 
indefinitely. 

Cnder thee pre uppositions let x"' be a limit point of xo, x i, .. Then it is clear 
that 

( i) C xx < C x~) ( k = 0, 1, 2, · · · ). 

I t will now be shown that x"" i a tationary point of G. 
Let .us suppose the contrary. \Ye write H(x =grad G, Jz(x) = H (x) I 

and let z (x) 
be a um t vector; thu 

H x) = - Ji x)'tix). ( ) 

According to the upposition, h(x"" ~O. Hence it will be possible to find a spherical 
neighborhood i; of x"" such that for x in U 

I 

H(x) - H (x"") I < Elz(x"") . 

Then ~t willk~~llow th~t /z(x)-h(x"') < Eh(x""), \z- z""\ <2E. H ence, from the ~act 
that z and z are at n ght angles, one can conclude tha t if xk is in U xk+l is certa inly 
not in l.: (provided E is not too large). ' 

.:\ext, let K be the conical sector of U for which 

x - x"" 
cos 8 = "" > 

I I 
· Z E. 

X - X"" 

s This it; also easily proved analytically. 
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Then it may bt ho" n, h) n·a .... onahh -..tnight-forward method , that for x in K, 

(9) 

Let l' be a .... uJrnrid1borhood of C -..uch that for x in r the ray in the direction z (as 
civcn by 

/ 
) from x intt:r-..ecb K 1c h a I" e\i t if E < ~· ince x"' is a limit point, 

there cxi t ~ -in x" i 11 1 '. Tht: n thl ra} m thl• dirtction z'· from x" will have a point y 
in K . I"h1.., Y can not lw ht·yond x" , ~111ce x - 1 is not in U and U is convex. Hence, 
by the n t notunic char.icter of(; on C Jnd b~ (9 , G x i+1) <G(y) < G(x'°), which con
tradict i ). Thi~ contradiction came from the a um pt ion that h(x"') ~ O. 

ThL followin~ t•xamplc _ho\\:.. that\\ c cannot c:-.pcct a better resul t without fu rther 
re trictions on G. Lt t G(x, y) =0 on the unit circle and G(x, .1•) >0 el ewhere. Outside 
thL• unit circl ·let the -.urface h,n'l' a spir,11 gully ma king infinitely many turns about 
the circlt>. fhcn the p.llh C will l'\'iclt•ntly follow the gull} and have all points of the 
unit circh· a" limit point-.. 

In a pr.1ctical prohlt•m ho\\l'Wr \\'l of trn know in advance that there is a unique 
minimum of G within -.; in tlw~c C1..,l' convergence i as ured. If G is given by (2) 
and t ht• J acohian of t ht· j' .... dot''°' not \':111i-.h in S, then every stationary point of G 
is a -.olullon of ' l , ·rt' , i.; onlv orw such .;olution the proce - converges to it. 

4. Concluding R emarks. In r~~anl to thl practical a pects of the method the fol-
1'."' ir 1•011 h 1 1 to I 1 c t1 d 1) j t docs not require any calculation of econd. der!va
tn·c:s. 'I hi:s is impon.111t for the applic 1tion mentioned, where these second denvati~es 
~re nunwroti... and complicatccl. (2) I t inrnln only direct calculation of c. a~d its 
hr::.t d1..•ri,·atin:-.. (,, Thl• appro.1ch to the limit, if any, is along a path C con 1 ting of 
trai ht lint• ~ ,,.,mcnt~. adj.1cr11t ~<' llll'nts being- approximately at right an?'les. . 

:\ comparison \\ ith I. vcnhcn!'~ nH thod in rcg-ard to the e three respects is now 1.n 
ordl'r. In the fir-..t re:-pcct the two met he Is lre alike. In the second respect Leven bergs 

· h I · · I · f t of "nor-mc t oc i:.. more complicated bccau!'-c lach sta. c require the so ut1on ° a .e 
mal" t•qu.ttion .. , a!'> in the tr.1ditional method of least quares. In the third re pect 
Lcvcnbcr~'::- llll'thod i-. likc thl prc-.rnt one in that it in\"Ol\'es approach alo~g a bro~en 
path C; but tlh individual piLClS of C arc curwd There is evidence that 10 practical 
problems tlw-..c curvl'"' folio\\ thL n1tural \"alky of the surface, so that ea~h. ste.p 
bring f · h f h po ing characteristics 1s ~ us un her tcJ\\ .1 rd t hl goal. .As to "htc o l ese op 
the more important is not n t c:.ettkcl ' 

' • . · I mentar}' trans-nnothcr point is that thL procc-.-. is not im·anant under certa~n e e (
6
) (f 

form t' f h Thu 1f the surface or a 1
0. ns, c.~ .. a chanrre of scale of one or mort o t e X;. ' h 'd ' 

n - 2) . I . I'> • • f d nt is along t e men tan, - ts a lLmi::.phcrical bowl. the dircct10n o tecpest esce ,. . 
and th · · f h the scale on the x,-axts ts c rnm1mu111 is n:achcd in one step. I , owcver, d · 
changed ~o that the 'Urfacc becomes cll1p-.oidal, the direct ion of s~eepe. ti esck enf ~ is 
no I · · · nheren t 1n th1s ac o monger directed to\\'ard the minimum. The suggestions 1 

variance: have not yet been fully \\Orked out. 

II Th . bod for the problems which have 
c f e engineers at Frankford ,\r:;enal prefer the Le\·enberg me~ ed th sent method. Since the 
i:n ronted them; but I do not knO\\ to \\hat extent the} ha\ e exploift h e pr:sentation it would not 
b venberg method is confined to a G of the form (3) and makes use 0 ~ .3~ rep~ difficult t~ concoct arti
fi e. sul rprising if it should prove superior for that ca~. On the other han h 11 ~~ ~o espect as well as the sec-
c1a exa mp les for which the method of ste<:pe"t de=-cent is superior in t e t ir r 

Ond, a t least for certain determinations of the weighting factor:.. 




